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Introduction

One tool helpful in attempts to attain accurate TL dates
of both unheated sediments and heated material is the
use of accurate extrapolation methods for laboratory TL
dose-response curves. Berger and others (1987) have
described a rapid and accurate (Berger and Huntley, 1989)
regression and error analysis method for the simple
saturating exponential model of dose response.
However, with an increasing effort to date accurately
geological material older than about 50 ka, I have
frequently encountered dose-response curves that do not
show saturation at high applied doses. The simplest
model that adequately describes the data and which has a
physical basis seems to be a saturating exponential with
an added linear term.

As pointed out recently by Levy (1989, equation 4),
linear TL buildup beyond an apparent saturation stage is
just one of several forms of high-dose response curves
that have been observed in the color center and radiation
damage literature over the past two decades. Examples of
geological quartz that exhibit either this added linear or a
more general added supralinear response have been
summarized by Fleming (1979), for example. An added
linear response may manifest creation of defect traps
simultaneous with trap filling during laboratory
irradiation.

To allow more accurate extrapolation from one such
"multi-stage” dose-response curve, I outline here
modifications to the equations of Berger and others
(1987) (hereafter denoted BLK87) that allow their
regression and rapid error analysis procedure to be
applied to the simple exponential-plus-linear model. The
use of these modifications is illustrated with an
application of the additive-dose method to fine-grained
volcanic glass about 170 ka old. These modifications
can also be applied straightforwardly to the partial-
bleach method used for unheated sediments.

Regression
Using the terminology of BLK87, the modified fitting
function is

f(D, 8) = a(1 + exp[-b(d+D)] ) + mD )]
where D is applied dose (in units of irradiation time to
avoid inclusion of systematic error from dose calibration

factors), 8 is a vector of four regression parameters (or
coefficients), and a, b, d and m are these coefficients.

As outlined by BLK87, the Gauss-Newton algorithm for
linearizing equation (1) and the quasi-likelihood method
(e.g., Dobson, 1990; Seber and Wild, 1989) of
regression are used to obtain best estimates of the four

coefficients. As before, w; =f “2(D;j,9) is a weighting

element (for the j™ data point) of the function (1) in the
quantity R to be minimized.

The weighted-residual function R(8) (BLK87 equation 7)
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is modified by extending the parameter summation k
from 3 to 4 so that G4(D;) = of/dm = D; from (1) above.
Thus the j*» row in the design matrix X (BLK87
equation 9) becomes simply

[1-¢ a (d + Dj)ej a brej, D] ?3)

where ; = exp[-b; (d ; + D;)] and the subscript r denotes
the it iteration of BLK87 equation 9. Equations 9 and 8
of BLK87 can then be used as outlined there to update
the parameter estimates and iterate equation 9 until the
required degree of precision is obtained.

In the case of the additive-dose method dealt with here,
the required equivalent-dose value (D,) is not equal to the
coefficient d in equation (1) above (as it is in the simple
saturating exponential model) but must be obtained by
numerical solution of f = 0. For this the standard
Newton-Raphson procedure is used.

Error analysis

The variance in this additive-dose D is calculated from
equation 17 of BLK87, with terms for the second
growth curve (required for the partial bleach method)
being dropped so that
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Here the extended variance-covariance matrix  is related
to the information matrix I (BLK87 equations 14 and
10) for which the elements are calculated with BLK87
equation 11. For the model in (1) I becomes a
symmetric 4 x 4 matrix with added elements I y,, Ipm,
Lim> Imm» and their symmetric counterparts (e.g., Ina =
Iam). Note that for the saturating exponential, subscript
¢ of BLK87 has been replaced by subscript d, as
explained in BLK87. Because of the form of (1) above,
the original nine elements of I (Appendix C of BLK&7)
do not change here.
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Figure 1.

Additive-dose data for purified volcanic glass from sample SML-5 at the 321-330 °C temperature zone of the
glowcurves, preheated for 8 days to remove unstable TL. There are three weighted best-fit curves: EXPI1+LINE (x-axis
intercept 39151 Gy), EXP2 (intercept 582 + 51 Gy), and EXP3 (intercept 456 + 34 Gy). The intercept for the

imbedded EXP1 curve is 443 Gy (error not computed).

Applying BLK87 equation 11 to (1) above we obtain for
the additional matrix elements of I ;

n
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where S; = exp[b(d+Dj)] - 1.

Similarly applying BLK87 equation 16 to (1) gives us
the additional fourth element (df/om) of the transpose
vector V4, that is, D.. The first three elements of V*
remain unchanged (Appendix D of BLK87). Finally, the
partial derivative in the denominator of (4) above
becomes abe + m, where e = exp[-b(d+D,)].

Application

Data from the 321 - 330 °C glow-curve interval for a
purified (by high-speed centrifugation using heavy
liquids) volcanic ash sample of about 170 ka old are
shown in Figure 1. The calculated D, values define a
plateau (over the interval 321 - 410 °C) only for the
exponential-plus-linear fit in Figure 1. A plateau is not
observed otherwise. Figure 1 also shows the poor fit of

the saturating exponential model to the entire data set
(EXP2), with a concomitant overestimate (582 £ 51 Gy
at 330 °C) of the De value.

Discussion

The main motivation for using a large applied dose
range in constructing dose-response curves is to
minimize the range of extrapolation and therefore the
error in the D, value. However, for a fixed number of
data points an increase in fitting parameters from 3 to 4
increases the error in the extrapolation. This effect is
seen here in the somewhat larger error (£ 51 Gy) for the
preferred EXP1+LINE fit compared to the EXP3 fit
(234 Gy) in spite of the additional 3 data points (at 6
kGy). Nevertheless, had the new model been considered
when these data were generated, then additional points in
the 1.5 - 6 kGy range could have been produced to better
constrain the linear term and thereby reduce the error in
the D, value. Thus for optimum use of the EXP1+LINE
model, considerably more data may need to be generated
than for the simple exponential model.

Alternatively, if the simple exponential model is applied
to only a limited range of the applied dose values (e.g.,
EXP3 in Fig. 1) then unacceptably large extrapolations
may be required for older samples than this example, and
selection of these truncated data points may require
unjustifiable subjectivity. Moreover, this use of
truncated data may cause an artificial failure of the
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plateau test, as observed with the sample in Figure 1.
The plateau test failed probably because truncation at a
constant dose value for all temperature points was
inappropriate for this sample. Even if truncated
regression does yield a plateau, the resultant TL age is
merely "a model age”.

Is the EXP+LINE regression model "physically
realistic” ? I have several data sets (for both glass-rich
ash and feldspar-rich sediments) for which this model
clearly produces better fits than does the simple
exponential model. One of these data sets (for a feldspar-
rich sediment) appears to require an even more
complicated EXP+SUPRALINEAR model. This
observation is consistent with the general emphasis of
Levy (1989) that a range of high- dose-response
behaviour may be expected, and that the EXP+LINE
model is just one of several physically realistic models.
As stated by Levy (1989), equation (1) above may
represent continual creation of defects throughout the
burial history.

Data such as in Figure 1 also suggest the need for
reconsideration of empirical comparisons of natural and
laboratory "saturation” levels of TL in feldspars for the
purpose of making corrections for long-term fading (e.g.
Mejdahl, 1989; Hiitt and Jaek, 1989). The usual
assumption that the "efficiency” of defect creation is
insignificant except at very high doses may need
reassessment. Such defect creation can give the
appearance (e.g., EXP3 in Figure 1) of a higher
"saturation” level than is appropriate for simple trap
filling alone.

Finally, several (but not all) of my data sets for old
samples suggest that equation (1) is a more realistic
approximation to the underlying (undetermined) physical
processes than is the simple saturating exponential. In
the author's general dating applications (wherein final
accuracy is assessed by comparison with at least one
independent control age for a sample suite) the stage has
not yet been reached where routine application of yet
more complicated models (e.g. the sum of equations 6
and 7 of Levy, 1989) is justifiable,
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