An improved multiple-aliquot regenerative-dose (MAR) procedure for post-IR IRSL dating of K-feldspar
Bo Li, Zenobia Jacobs and Richard G. Roberts

Defining minimum reporting requirements for ESR dating of optically bleached quartz grains
Mathieu Duval, Jean-Jacques Bahain, Melanie Bartz, Christophe Falguères Verónica Guilarte, Davinia Moreno, Hélène Tissoux, Miren del Val, Pierre Voinchet and Lee J. Arnold

Always remain suspicious: a case study on tracking down a technical artefact while measuring IR-RF
Sebastian Kreutzer, Madhav Krishna Murari, Marine Frouin, Markus Fuchs and Norbert Mercier

Thesis abstracts

Bibliography

Announcements
An improved multiple-aliquot regenerative-dose (MAR) procedure for post-IR IRSL dating of K-feldspar

Bo Li1*, Zenobia Jacobs1,2, Richard G. Roberts1,2

1 Centre for Archaeological Science, School of Earth and Environmental Sciences
University of Wollongong, New South Wales, Australia
2ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong,
Wollongong, NSW 2522, Australia

*Corresponding Author: bli@uow.edu.au

Received: March 19, 2017; in final form: May 7, 2017

Abstract

In optical dating, multiple-aliquot dating methods have been considered inferior to single-aliquot methods, due to difficulties inherent to in between-aliquot normalisation. In this study, we propose an improved multiple-aliquot regenerative-dose (MAR) procedure for the multiple-elevated-temperature post-IR IRSL (MET-pIRIR) signals from K-feldspar grains. This method is based on observations that a common, or standardised, growth curve (SGC) exists between different aliquots from the same and different samples, and that between-aliquot variation can be largely eliminated by application of regenerative-dose (‘re-normalisation’) or least squares (LS) normalisation procedures. We find that this improved MAR procedure significantly increases the accuracy and precision of D_e determinations. We tested this method using several sediment samples from Marathousa, a Middle Pleistocene archaeological site in Greece, and demonstrate that, for the K-feldspar grains from these samples, the proposed MAR method overcomes problems associated with inappropriate sensitivity correction of the natural (I_n) and test dose (T_n) signals at low stimulation temperatures (50–150°C) more effectively than the SAR method. The MAR method can also reduce instrument time for measurement of older samples.

Keywords: K-feldspar, IRSL, post-IR IRSL, multiple aliquot, single aliquot

1. Introduction

In optical dating, both the optically stimulated luminescence (OSL) signal from quartz and infrared stimulated luminescence (IRSL) signal from potassium-rich (K) feldspar grains can be measured to determine the radiation (‘burial’) dose received by mineral grains after their last exposure to sunlight (Aitken, 1998). To obtain useful information regarding the burial time of quartz and K-feldspar grains, the OSL or IRSL signals must be converted into a reliable estimate of equivalent dose (D_e). The D_e is estimated by comparing the natural OSL or IRSL signals against a series of known-dose laboratory signals that form a dose response curve (DRC); regenerative-dose methods are preferred over additive-dose methods, because the D_e is obtained by interpolation, rather than by extrapolation, of the DRC (e.g., Lian & Roberts, 2006). Two kinds of regenerative-dose methods have been developed for D_e determination—multiple-aliquot regenerative-dose (MAR) procedures (Wintle, 1993; Aitken, 1998) and single-aliquot regenerative-dose (SAR) procedures (Murray & Roberts, 1998; Galbraith et al., 1999; Murray & Wintle, 2000). Emphasis has shifted from the development and use of MAR procedures to SAR procedures to exploit the many inherent advantages of the latter (e.g., Duller, 2008; Wintle, 2014).

Some studies, however, have demonstrated that the SAR method is not always suitable, and that there may be merit in revisiting the MAR procedure in specific cases. For example, for quartz samples from the Chinese Loess Plateau, Lu et al. (2007) showed that the build-up of OSL signal during repeated SAR measurement cycles resulted in underestimation of the D_e. They proposed a sensitivity-corrected MAR method, in which the test dose signal (T_i) is used to normalise between aliquots, following the suggestion by

...
locations. The sensitivity-corrected natural signal (L_n/T_n) was projected on to the dose response curve established using the sensitivity-corrected regenerative-dose signal (L_x/T_x) from multiple aliquots.

For feldspar IRSL signals, it has been suggested that a large sensitivity change may occur during measurement of L_n, resulting in a significant difference between the luminescence efficiency of the natural dose and subsequent test dose (T_n), and between L_n/T_n and L_x/T_x, when using SAR (e.g., Chen et al., 2013; Li et al., 2013a; Chen et al., 2015; Guo et al., 2015; Van den Bergh et al., 2016). This would cause the sensitivity correction of L_n to be inappropriate, giving rise to erroneous D_e estimates. Li et al. (2013a) were the first to apply a MAR procedure based on sensitivity-corrected signals (L_n/T_n and L_x/T_x) to pIRIR dating of K-feldspar grains. In their study, the sample was divided into different groups of aliquots: one group was used to measure the natural signals, and the other groups were bleached using a solar simulator for several hours before being given different regenerative doses. The IRSL and MET-pIRIR L_x and T_x signals were then measured to establish a dose response curve, and the D_s estimated from the L_n/T_n signals. A similar approach was adopted by Chen et al. (2015) and Guo et al. (2015). This method, however, is only suitable for samples that exhibit homogeneous behaviours among different aliquots, and is not applicable to samples with L_n/T_x signals that are highly variable among different grains or aliquots (e.g., Li et al., 2014b, 2015b).

A key objective of any MAR procedure, therefore, should be to reduce any between-aliquot variability. This can be achieved through the application of an appropriate normalisation procedure. Li et al. (2015a, 2016) proposed the regenerative-dose normalisation (‘re-normalisation’) and least squares (LS) normalisation methods to reduce the between-aliquot differences in DRC shapes for single aliquots of quartz and K-feldspars. When these methods were applied to samples from a variety of geological provenances, environmental settings and depositional ages, the OSL and MET-pIRIR signals were significantly reduced between-aliquot scatter and similar DRCs. As a result, a ‘global standardised growth curve’ (gSGC) could be established for quartz (Li et al., 2015a, 2016) and K-feldspar (Li et al., 2015b).

In this study, we aim to investigate the feasibility of incorporating the re-normalisation method into a MAR procedure, and examine the advantages and disadvantages of the new MAR procedure compared to conventional MAR and SAR procedures. We demonstrate that the new MAR method overcomes the difficulty in normalising for between-aliquot scatter in samples from a site in Greece, and allows for the construction of a standardised growth curve for these samples. This method has the potential to be used for D_s determination of K-feldspars from other sites and geographical locations.

2. Sample descriptions

Samples were collected from Marathousa I, a newly discovered Lower Palaeolithic archaeological site located in the Megalopolis basin in southern Greece (Panagopoulou et al., 2015). The sedimentary deposits are of Middle Pleistocene age and are composed of lacustrine clay, silt and sand beds, alternating with lignite seams, representing a former lake environment (Vinken, 1965; Van Vuigt et al., 2000). Here, we present results for four samples: MAR-01, MAR-R1, MAR-R2 and MAR-R5. MAR-01, MAR-R2 and MAR-R5 were collected from sandier units underlying the archaeological level, while MAR-R1 was collected from a lignite seam overlying the archaeological level.

3. Experimental procedures

All samples were prepared for IRSL analysis using routine procedures (Aitken, 1998). Samples were treated with solutions of HCl acid and H_2O_2 to remove carbonates and organic matter, respectively, and then dried and sieved to obtain grains of 180 – 212 µm in diameter. The K-feldspar grains were separated from quartz and heavy minerals using a solution of sodium polytungstate with a density of 2.58 g/cm^3. The separated K-feldspar grains were immersed in 10% HF acid for 40 min to etch the surfaces of the grains and remove the outer, alpha-irradiated portions; they were then rinsed in HCl acid to remove any precipitated fluorides. The dried and etched K-feldspar grains were mounted as a monolayer on stainless-steel discs of 9.8 mm diameter using “Silkospray” silicone oil as an adhesive. Grains covered the central ~ 5 mm diameter portion of each disc, corresponding to several hundred grains per aliquot.

IRSL measurements were made on an automated Risø TL-DA-20 reader equipped with IR diodes for stimulation (870 ± 40 nm). The total IR power delivered to the sample position was ~ 135 mW/cm^2 (Botter-Jensen et al., 2017).

![Figure 1. Representative IRSL (50°C) and MET-pIRIR (100 – 275°C) decay curves for a single aliquot of sample MAR-01, stimulated at different temperatures (shown above each curve).](image-url)
Laboratory irradiations were carried out on the reader using a calibrated 30Sr/90Y beta source. IRSL signals were detected by an Electron Tubes Ltd. 9235B photomultiplier tube fitted with Schott BG-39 and Corning 7-59 filters to restrict transmission to 320–480 nm. Each IRSL measurement was made for 100 s, and the resulting signal was calculated as the sum of counts over the initial 10 s of optical stimulation, with ‘late light’ subtraction (Aitken, 1998) of the background count rate over the final 10 s of optical stimulation. For each IRSL measurement, an ‘IR-off’ period of up to 50 s prior to stimulation was applied to monitor and minimise the isothermal decay signal (Fu et al., 2012).

4. Results

4.1. A single-aliquot LS-normalisation procedure and standardised growth curve

We tested whether the LS-normalisation method is applicable to the samples from Greece, using a total of 18 single aliquots of K-feldspar from sample MAR-01. Each aliquot was measured using the SAR pMET-pIRIR procedure (Table 1a), in which the aliquots were bleached for ~ 4 hrs in a solar simulator at the end of each SAR cycle (Li et al., 2014b). Two to four regenerative doses, ranging from 0 to ~ 1900 Gy, were given to each aliquot and the signals measured, together with the signals arising from the test dose of ~ 60 Gy applied to each aliquot. Fig. 1 shows representative natural IRSL (50°C) and MET-pIRIR (100–275°C) decay curves for an aliquot of sample MAR-01. The intensities of the MET-pIRIR signals are on the order of a few hundred to several tens of thousands of counts per second. The L_d/T_a and L_x/T_x signals observed for different aliquots of this sample, measured at different stimulation temperatures, are compared in Fig. 2a–e. Large between-aliquot scatter can be observed: for example, the relative standard deviation (RSD) of the L_x/T_x ratios at a fixed dose are about 5–10 %. This finding is similar to that made by Li et al. (2015b), who suggested that T_x cannot fully correct for the differences between aliquots.

Table 1. Single-aliquot (a) and multiple-aliquot (b) procedures for pMET-pIRIR measurements.

<table>
<thead>
<tr>
<th>Step</th>
<th>Treatment</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Give regenerative dose, D_i a</td>
<td>Give regenerative dose, D_i a</td>
</tr>
<tr>
<td>2</td>
<td>Preheat at 320°C for 60 s</td>
<td>Preheat at 320°C for 60 s</td>
</tr>
<tr>
<td>3</td>
<td>b IRSL measurement at 50°C for 100 s</td>
<td>b IRSL measurement at 50°C for 100 s L_x (50°C)</td>
</tr>
<tr>
<td>4</td>
<td>b IRSL measurement at 100°C for 100 s</td>
<td>b IRSL measurement at 100°C for 100 s L_x (100°C)</td>
</tr>
<tr>
<td>5</td>
<td>b IRSL measurement at 150°C for 100 s</td>
<td>b IRSL measurement at 150°C for 100 s L_x (150°C)</td>
</tr>
<tr>
<td>6</td>
<td>b IRSL measurement at 200°C for 100 s</td>
<td>b IRSL measurement at 200°C for 100 s L_x (200°C)</td>
</tr>
<tr>
<td>7</td>
<td>b IRSL measurement at 275°C for 100 s</td>
<td>b IRSL measurement at 275°C for 100 s L_x (275°C)</td>
</tr>
<tr>
<td>8</td>
<td>Give test dose, 60 Gy</td>
<td>Give test dose, 60 Gy</td>
</tr>
<tr>
<td>9</td>
<td>Preheat at 320°C for 60 s</td>
<td>Preheat at 320°C for 60 s</td>
</tr>
<tr>
<td>10</td>
<td>b IRSL measurement at 50°C for 100 s</td>
<td>b IRSL measurement at 50°C for 100 s T_x (50°C)</td>
</tr>
<tr>
<td>11</td>
<td>b IRSL measurement at 100°C for 100 s</td>
<td>b IRSL measurement at 100°C for 100 s T_x (100°C)</td>
</tr>
<tr>
<td>12</td>
<td>b IRSL measurement at 150°C for 100 s</td>
<td>b IRSL measurement at 150°C for 100 s T_x (150°C)</td>
</tr>
<tr>
<td>13</td>
<td>b IRSL measurement at 200°C for 100 s</td>
<td>b IRSL measurement at 200°C for 100 s T_x (200°C)</td>
</tr>
<tr>
<td>14</td>
<td>b IRSL measurement at 275°C for 100 s</td>
<td>b IRSL measurement at 275°C for 100 s T_x (275°C)</td>
</tr>
<tr>
<td>15</td>
<td>Solar simulator bleach for 4 hrs</td>
<td>Solar simulator bleach for 4 hrs</td>
</tr>
<tr>
<td>16</td>
<td>Repeat step 1–15 for different D_i</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>b IRSL measurement at 50°C for 100 s</td>
<td>b IRSL measurement at 50°C for 100 s L_x (50°C)</td>
</tr>
<tr>
<td>18</td>
<td>b IRSL measurement at 100°C for 100 s</td>
<td>b IRSL measurement at 100°C for 100 s L_x (100°C)</td>
</tr>
<tr>
<td>19</td>
<td>b IRSL measurement at 150°C for 100 s</td>
<td>b IRSL measurement at 150°C for 100 s L_x (150°C)</td>
</tr>
<tr>
<td>20</td>
<td>b IRSL measurement at 200°C for 100 s</td>
<td>b IRSL measurement at 200°C for 100 s L_x (200°C)</td>
</tr>
<tr>
<td>21</td>
<td>b IRSL measurement at 275°C for 100 s</td>
<td>b IRSL measurement at 275°C for 100 s L_x (275°C)</td>
</tr>
<tr>
<td>22</td>
<td>Give test dose, 60 Gy</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Preheat at 320°C for 60 s</td>
<td>Preheat at 320°C for 60 s</td>
</tr>
<tr>
<td>24</td>
<td>b IRSL measurement at 50°C for 100 s</td>
<td>b IRSL measurement at 50°C for 100 s T_x (50°C)</td>
</tr>
<tr>
<td>25</td>
<td>b IRSL measurement at 100°C for 100 s</td>
<td>b IRSL measurement at 100°C for 100 s T_x (100°C)</td>
</tr>
<tr>
<td>26</td>
<td>b IRSL measurement at 150°C for 100 s</td>
<td>b IRSL measurement at 150°C for 100 s T_x (150°C)</td>
</tr>
<tr>
<td>27</td>
<td>b IRSL measurement at 200°C for 100 s</td>
<td>b IRSL measurement at 200°C for 100 s T_x (200°C)</td>
</tr>
<tr>
<td>28</td>
<td>b IRSL measurement at 275°C for 100 s</td>
<td>b IRSL measurement at 275°C for 100 s T_x (275°C)</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) For the natural sample, the given dose $D_i = 0$ Gy

(b) The same D_i (~ 400 Gy) is applied to all aliquots from the different groups.
Figure 2. SAR L_x/T_x ratios (a–e) and re-normalised L_x/T_x ratios (f–j) for sample MAR-01, plotted as a function of laboratory dose. Different aliquots are represented by different colours. Aliquots were measured using the SAR pMET-pIRIR listed in Table 1a. The data shown in panels (f)–(j) for the different aliquots were fitted using a general-order kinetic function (full lines). The DRCs have been normalised to unity at a dose of 400 Gy, to facilitate direct comparison with the multiple-aliquot DRCs (section 4.3).
To test whether different aliquots of the same sample have similar growth curve shapes, we applied the LS-normalisation procedure of Li et al. (2016). This procedure comprises the following steps: (1) \(L_x/T_x \) signals from all aliquots are fitted using a best-fit model; (2) \(L_x/T_x \) values from each aliquot are re-scaled using scaling factors determined through an optimisation procedure that minimises the sum of squared residuals between the re-scaled signals and the curve of best fit; and (3) the fitting (step 1) and re-scaling (step 2) procedures are repeated iteratively until there is negligible change in the LS-normalised regenerative-dose signals. The LS-normalisation procedure was achieved using the built-in function ‘lsNORM()’ provided in the R-package ‘numOSL’ (Peng et al., 2013; R Core Team, 2016).

A general-order kinetic (GOK) function (Guralnik et al., 2015) of the form \(f(x) = a[1 - (1 + b cx)^{-1/c}] + d \), where \(x \) is the dose and the parameters \(a, b, c \) and \(d \) are constants, was used to fit the DRCs; \(a \) denotes the maximum signal level, \(b \) is the reciprocal of the saturation dose \(D_0 \), \(c \) is a kinetic order modifier, and \(d \) is an offset accounting for potential recuperation effects. For \(c \to 0 \), the GOK function reduces to a single saturating exponential. As \(c \) increases, the GOK function progressively deviates from first-order behaviour and approximates a double saturating exponential or a saturating exponential plus linear function; see Guralnik et al. (2015) for details.

The LS-normalised DRCs are shown in Fig. 2f–j, where it can be seen that the between-aliquot scatter for the \(L_x/T_x \) ratios is greatly reduced (e.g., the RSD for the \(L_x/T_x \) signals at a fixed dose is reduced to about 1–4%). These results suggest that different aliquots measured using the SAR pMET-pIRIR procedure share similar DRCs, provided the \(L_x/T_x \) signals are normalised appropriately.

4.2. A multiple-aliquot LS-normalisation procedure and standardised growth curve

We propose that the MAR procedure can also be improved and optimised using this LS-normalisation method. The two most critical prerequisites of a multiple-aliquot procedure are that: 1) different aliquots share the same DRCs; and 2) between-aliquot differences in luminescence signals are normalised appropriately. For the former, we have demonstrated that the pMET-pIRIR signals from feldspars may share similar DRCs (Li et al., 2015b), and this is confirmed for our samples (section 4.1). For between-aliquot normalisation, we applied the pMET-pIRIR procedure of Li et al. (2013a, 2014b) to all four Greek samples. A total of 55 aliquots (4 from MAR-01, 15 from MAR-R1, 22 from MAR-R2 and 14 from MAR-R5) were bleached in the solar simulator for \(\sim 8 \) hrs. These aliquots were then given different regenerative doses, ranging from 0 to \(\sim 2000 \) Gy, and were measured using the procedure listed in Table 1b. The IRSL signals for the regenerative and test doses were measured successively at 50, 100, 150, 200 and 275°C, following a preheat at 320°C for 60 s. At the end of each test dose IRSL measurement, the aliquots were bleached for \(\sim 4 \) hrs in a solar simulator. An identical regenerative dose (\(D_e \)) was then given to the bleached aliquots, followed by measurement of the regenerative and corresponding test dose signals (\(L_r \) and \(T_r \), respectively), as before.

The \(L_r/T_r \) ratios measured at different stimulation temperatures are shown in Fig. 3a–e for different aliquots, plotted against their corresponding regenerative doses. Two features of these data are noteworthy. First, there are large between-sample variations in the \(L_r/T_r \) ratios at a dose. Second, there is also substantial between-aliquot scatter for some of these samples. As a result, a reliable DRC cannot be constructed from the multiple-aliquot \(L_r/T_r \) ratios. Fig. 3f–j shows the re-normalised ratios \(\left(\frac{L_x}{T_x} \right) \), plotted as a function of regenerative dose at the different stimulation temperatures. The \(L_x/T_x \) ratios were normalised by dividing the corresponding \(L_x/T_x \) ratios obtained by giving each aliquot an additional regenerative dose, \(D_e \) (Table 1b). Peng et al. (2016) conducted numerical simulations comparing the SGCs obtained using different re-normalisation doses and found little difference in accuracy or precision for a range of re-normalisation doses; we used a re-normalisation dose of 400 Gy for our samples. It can be seen that the between-aliquot scatter is reduced and, more importantly, the normalisation procedure appears to bring the DRCs of the different samples into much closer alignment. This result supports our proposition that the re-normalisation procedure can help improve the MAR results, to the extent that there is potential to construct reliable SGCs for multiple-aliquot MET-pIRIR signals.

4.3. Comparing LS-normalised SAR and MAR SGCs

The fitted SAR SGCs shown in Fig. 2f–j are shown as red dashed lines in Fig. 3f–j, to facilitate comparison with the MAR SGCs, shown as solid lines. Both the SAR and MAR SGCs were normalised using the signal induced by a regenerative dose of 400 Gy, so their shapes are directly comparable. The SAR SGCs differ from the MAR SGCs at low stimulation temperatures (i.e., 50, 100 and 150°C); they exhibit a much steeper growth at low doses and reach a slightly higher saturation level (Fig. 3f–h). The difference is most significant for the 50°C IRSL signal (Fig. 3f) and decreases as the stimulation temperature is increased. Only a slight difference in DRC shape and saturation intensity is observed at a stimulation temperature of 275°C (Fig. 3j). We propose that the difference between the SAR and MAR SGCs at the lower temperatures is a result of progressive sensitivity change (luminescence efficiency) between the measurement of \(L_x \) and \(T_x \), possibly extending over several measurement cycles for different IR stimulation temperatures. A prediction of this outcome is that the \(D_e \) values determined using the SAR and MAR SGCs are likely also to be different, especially for the signals measured using low-temperature stimulations.

4.4. \(D_e \) estimation based on SAR and MAR SGCs

We calculated \(D_e \) values based on the SAR SGCs for each stimulation temperature (Fig. 2f–j), following the method...
Figure 3. MAR L_x/T_x ratios (a–e) and re-normalised MAR L_x/T_x ratios (f–j) for the four Greek samples, plotted as a function of laboratory dose. Each data point corresponds to one aliquot, with different colours representing the different samples. The data shown in panels (f)–(j) were fitted using a general-order kinetic function, shown by black lines; the dashed lines are the best-fit SGCs obtained from the SAR data for sample MAR-01 (Fig. 2f–j).
and equation presented in Li et al. (2015a):

\[f(D_e) = \frac{I_{n}}{T_n} \times \frac{f(D_e)}{f(T)} \]

where \(f(D_e) \) denotes the SAR SGCs established by LSnormalisation, and \(D_e \) and \(L_n/T_n \) denote the additional regenerative dose and the ratio for the corresponding sensitivity-corrected signal, respectively. Li et al. (2015a) provide a worked example of how to calculate SGC \(D_e \) values using this function.

We also calculated \(D_e \) values based on the MAR SGCs at each stimulation temperature (Fig. 3f–j) for three of the samples — MAR-01 (6 aliquots), MAR-R2 (9 aliquots) and MAR-R5 (10 aliquots) — using the pMET-pIRIR procedure listed in Table 1b. After measuring the \(L_n \) and \(T_n \) signals, each aliquot was bleached for \(4 \) hrs in the solar simulator and then given a regenerative dose of 400 Gy and a subsequent test dose of 60 Gy, the same as used to establish the MAR SGCs. The \(L_n/T_n \) ratios were then re-normalised using the corresponding \(L_n/T_r \) ratios, and the re-normalised ratios \((L_n/T_r) \) were projected on to the MAR SGCs (solid lines in Figs. 3f–j) to estimate the \(D_e \) values.

The \(D_e \) values determined at each stimulation temperature were combined using the central age model (Galbraith et al., 1999; Galbraith & Roberts, 2012) (to obtain weighted-mean \(D_e \) values for the single- and multiple-aliquot data sets, for comparison. The weighted-mean \(D_e \) values are plotted as a function of stimulation temperature in Fig. 4a–c \((D_e-T)\) plots) for samples MAR-01, MAR-R2 and MAR-R5. The MAR \(D_e \) values (circles) differ negligibly with stimulation temperature, whereas the SAR \(D_e \) values (triangles) increase systematically with stimulation temperature, resulting in statistically significant differences between the SAR and MAR weighted-mean \(D_e \) values for all three samples at stimulation temperatures of 50, 100 and 150 °C. The SAR and MAR weighted-mean \(D_e \) values are statistically indistinguishable at stimulation temperatures of 200 and 275 °C.

Low-temperature (<200°C) IRSL signals are commonly thought to suffer from anomalous fading, giving rise to underestimation of the measured \(D_e \) values (Li et al., 2014a). The \(D_e-T \) plot is often used in support of this influence (Li & Li, 2011), based on observations of an increase \(D_e \) with an increase in stimulation temperature until a \(D_e \) ‘plateau’ is reached at higher temperatures; the latter is interpreted as indicating negligible fading of the IRSL signal at stimulation temperatures above 200°C (Li & Li, 2011) or above 250°C for older samples (Li & Li, 2012). The SAR \(D_e-T \) plots exhibit patterns for the Greek samples consistent with those reported previously for other samples (i.e., an increase in \(D_e \) with stimulation temperature), which might be attributed to anomalous fading causing underestimation of the measured \(D_e \) values at low stimulation temperatures. However, the MAR \(D_e-T \) plots show negligible change in \(D_e \) with an increase in stimulation temperature, which implies no difference in fading rate of the signals measured at the various stimulation temperatures.

To explicitly test for the effect of fading on \(D_e \) values, we conducted anomalous fading tests on samples MAR-R2 and MAR-R5, using a single-aliquot measurement procedure similar to that described in Auclair et al. (2003), but based on the MET-pIRIR procedure. The corresponding anomalous fading rates (g-values) are displayed in Fig. 5a for the IRSL and MET-pIRIR signals measured at the different stimulation temperatures. There is little difference between the fading rates for the various signals, and all g-values are statistically consistent with zero at 2σ. This pattern differs from those reported for samples from other regions, as presented in previous studies, which typically exhibit the highest anomalous fading rate for the 50°C IRSL signal and lower rates for the signals measured at higher stimulation temperatures (e.g., Li
Given the absence of significant fading in samples MAR-R2 and MAR-R5, therefore, the \(D_e \) values should be consistent regardless of stimulation temperature, and this is confirmed by the MAR \(D_e \) results.

Furthermore, the fading test results indicate that the pattern seen in the SAR \(D_e \) results is not a result of varying degrees of anomalous fading at the different stimulation temperatures. Instead, we suggest that this pattern indicates that the extents of sensitivity changes occurring during measurement of \(L_n \), prior to measurement of \(T_n \), are different from those occurring between \(L_x \) and \(T_x \), so that the sensitivity-correction method in SAR does not adequately compensate for these changes. This proposition is supported by the SAR dose recovery data for sample MAR-01 (Fig. 5b), which display the same pattern of increasing \(D_e \) with increasing stimulation temperature as seen with the natural samples (Fig. 4a–c), i.e., there are significant underestimation in the recovered ratio for the low-temperature (50 – 100 °C) signals. Given anomalous fading is not a factor in dose recovery experiments, the underestimation in the low-temperature (50 – 100 °C) signals confirms that the pattern seen in the SAR \(D_e \) results is a result of different extents of sensitivity changes occurred during measurement of \(L_n, T_n, L_x \) and \(T_x \).

5. Discussion

The new LS-normalised pMET-pIRIR MAR method applied to K-feldspar offers several advantages over standard SAR procedures. Most importantly, it does not suffer from problems associated with inappropriate sensitivity correction between measurement of the \(L_n, T_n \) and \(L_x \) and \(T_x \) signals. Similar to previous studies (e.g., Chen et al., 2013; Li et al., 2013b; Chen et al., 2015; Guo et al., 2015; ?), we find that erroneous results can be obtained using a SAR procedure if the relative change in sensitivity between \(L_n \) and \(T_n \) is significantly different from the changes between \(L_x \) and \(T_x \).

Our SGC (Fig. 3f–j), fading (Fig. 5a), dose recovery test (Fig. 5b) and \(D_e \) (Fig. 4) results demonstrate that the MAR method proposed here can circumvent this problem effectively. Additionally, the MAR method potentially requires less instrument time than the SAR method, especially for older samples that need more and larger regenerative doses to construct a robust DRC. A MAR SGC can be established using different samples from the same site (Fig. 3), so there is no need to measure the same regenerative doses for each sample, and a single MAR SGC can be used to estimate \(D_e \) values for samples spanning a range of ages from the same site. Furthermore, the results produced by this method should be more reliable, because a DRC established using more regenerative doses (or data points) will be more precise than a conventional SAR dose response curve and also more resistant to random errors caused by measurement uncertainties, which may result in significant changes to the shape of observed DRCs (Li et al., 2017). As with all DRCs, it is important to minimise any sources of possible systematic bias in the construction of SGCs.

6. Conclusions

We have proposed a LS-normalised MAR procedure to determine \(D_e \) values for K-feldspars using the pMET-pIRIR signal. Our method is built on the demonstration that a common growth curve, or SGC, exists for different pIRIR signals (Li et al., 2015b) and that between-aliquot variation can be largely eliminated by normalising the \(L_n/T_n \) and \(L_x/T_x \) ratios using the corresponding \(L_r/T_r \) ratios from an additional regenerative dose (Li et al., 2015b,b, 2016). By applying a re-normalisation procedure, the new MAR method can overcome the main drawback of conventional multiple-aliquot methods — the difficulty of normalising different aliquots — resulting in a significant improvement in the accuracy and precision of the DRC construction and \(D_e \) estimation. Problems associated with inappropriate sensitivity correction of the \(L_n \) signal using the \(T_n \) signal in the standard SAR procedure can also be avoided and, especially for older samples, instrument time can be saved.
Acknowledgments

This research was funded by the Australian Research Council through Future Fellowships to Li (FT140100384) and Jacobs (FT150100138), and an Australian Laureate Fellowship to Roberts (FL130100116). We thank Yasaman Jafari and Terry Lachlan for valuable support in the OSL dating laboratory, and Panagiotis Karkanas for advice and assistance in the field.

References

Reviewer
Vasilis Pagonis
Defining minimum reporting requirements for ESR dating of optically bleached quartz grains

Mathieu Duval,1* Jean-Jacques Bahain,2 Melanie Bartz,3 Christophe Falguères,2 Verónica Guilarte,4 Davinia Moreno,4 Hélène Tissoux,2,5 Miren del Val,6 Pierre Voinchet,2 Lee J. Arnold7

1Australian Research Centre for Human Evolution (ARCHE), Environmental Futures Research Institute, Griffith University, Nathan QLD 4111, Australia.
2Département de Préhistoire, Muséum National d’Histoire Naturelle, UMR 7194, Paris, France.
3Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany.
4Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Paseo de la Sierra de Atapuerca 3, 09002 Burgos, Spain.
5Service Géologique National - BRGM. 45060 Orléans Cedex 2, France.
6Department of Mineralogy and Petrology, UPV/EHU University of the Basque Country, B Sarriena, s/n, 48940 Leioa, Spain.
7School of Physical Sciences, Institute for Photonics and Advanced Sensing (IPAS) and Environment Institute, University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.

*Corresponding Author: m.duval@griffith.edu.au

Received: February 28, 2017; in final form: May 29, 2017

Abstract

More than 30 years after the first Electron Spin Resonance (ESR) dating application to optically bleached quartz grains by Yokoyama et al. (1985), the absence of standardization for reporting methodology and age results remains an obstacle for the development and recognition of the ESR dating method within the Quaternary scientific community. To overcome this issue, the present work proposes some basic guidelines which should hopefully be useful not only for the ESR dating community, but also for any potential reviewers who may not be familiar with the specificities of this field.

Keywords: Electron Spin Resonance (ESR) dating; Quartz grains; Aluminium centre; Titanium centre; Equivalent Dose; Dose rate

1. Introduction

In any scientific paper, regardless of the field considered, the section dedicated to the description of the method is of crucial importance: it must contain the minimum information about experimental conditions to provide the reader a clear and precise understanding of the analytical procedure that has been followed. This is a necessary requirement for not only evaluating the reliability and validity of the methodology that has been employed, but also to open the possibility to replicate the experiment under similar conditions (e.g. Azevedo et al., 2011; Kallet, 2004).

In geochronology studies this section is especially important, and minimum information should be reported with enough details so that the reader can correctly assess the reliability and interpret the meaning of the age estimates that have been produced. The data set provided should also be detailed enough to permit independent age re-assessments, in light of methodological advances that will be progressively made in the future (Duller, 2008). The importance of
standardizing the reporting of methodology and age results has already been carefully considered for many Quaternary dating techniques, such as radiocarbon (e.g. Millard, 2014, and references therein), Ar-Ar (Ren et al., 2009), U-series (Dutton et al., 2017) and luminescence dating (Forman et al., 2000; Duller, 2008). This is, however, somewhat contrasting with the situation in ESR dating.

Four decades after the first use of ESR spectroscopy for dating purpose (Ikeya, 1975), and 30 years after the first applications to optically bleached quartz grains (Yokoyama et al., 1985), the absence of a minimum standardization for reporting research in this field is a concern. It remains an obstacle for the development and recognition of the ESR dating method within the Quaternary scientific community. So far, the only attempt in this direction was made by Grün (1992) who produced some general recommendations for most of the materials that were then usually dated by ESR (mainly tooth enamel and carbonates).

More than 20 years later, one may observe an increasing number of ESR dating studies based on optically bleached quartz grains, using aluminum (Al), titanium (Ti) or germanium (Ge) paramagnetic centres, but the information reported varies greatly among papers. As with luminescence dating, an ESR age estimate based on optically bleached quartz grains is basically derived from the determination of two main parameters: the equivalent dose \(D_E\), which is the laboratory estimate of the palaeodose, i.e. the total dose absorbed by the sample since the ESR signal has been last reset to zero by sunlight exposure, and the dose rate \(\dot{D} \), which is an estimation of the mean dose annually absorbed by the sample. However, there are several ways to evaluate these two parameters, and so far there is no standardization of analytical procedures within the ESR dating community to determine the \(D_E \) or \(\dot{D} \) (notations from Grün (1992)). For this reason, providing only these two values in a scientific publication is not sufficient for the reader to gain a clear idea of the meaning and implications of the age results that have been obtained. It is frequently the case that the information presented in publications is not sufficient for external critical assessment. Given this situation, it now seems timely to define some minimum requirements for reporting methodology and ESR age estimates based on quartz grains.

2. Reporting ESR methodology

The standard ESR dating analytical procedure is usually made by five main steps: (i) sample collection, (ii) sample preparation, (iii) ESR dose response curve reconstruction and \(D_E \) determination, (iv) dose rate estimation and (v) age calculation. The following sub-sections 2.1 to 2.5 describe step by step the minimum information that should be reported, while an overview is given in Table 1.

2.1. Sample collection

The most crucial information to report here is any basic details regarding the position of the samples within the stratigraphic sequence, their depth, as well as the geographic location of the sampling locality (including altitude). It may also be mentioned whether additional sediment samples were collected for water content or additional laboratory analyses. Lastly, in cases where in situ dosimetry measurements have been carried out on site, the following should be briefly specified: (i) the relative position of the in situ measurement with respect to the ESR samples, (ii) the technique that has been used (e.g., thermoluminescence (TL) or optically stimulated luminescence (OSL) dosimeter, gamma spectrometry), (iii) how the calibration, if applicable, was performed, (iv) and how the data were extracted and converted to dose rate values (e.g., “energy windows,” “threshold”). For points (iii) and (iv), referencing of previous work that already details the required information would be sufficient. Note that it may be more convenient to include points (ii) to (v) in the methods section dedicated to dose rate evaluation.

In particular, special emphasis should be given to the stratigraphic relationship between the dating event of interest and the sample being dated, i.e., whether the sample provides a direct, indirect, minimum, maximum or equivalent age estimate for the event/artefact/object/fossil under consideration. Additionally, the physical proximity (distance) of the sample to the event/artefact/object/fossil under consideration should be stated. Often this information is overlooked but it is critical to interpret the meaning of the final age estimate.

Additional information may be especially useful for the reader, like the sampling conditions (e.g., PVC tubes, blocks) and the precautions taken to minimize exposure to sunlight, if any (e.g., night sampling, day sampling under an opaque plastic cover), as bleaching rates of the ESR signals are known to be slower than that of the OSL signals (e.g., Duval et al., 2017). Brief description of the sedimentary context and geological characteristics of the deposits such as their origin (e.g., volcanic) or grain size could be provided as well, as they may give some insights about bleaching conditions during sediment transport (e.g., Voinchet et al., 2015). Pictures of the samples in their sedimentary context could also be used to provide complementary information for the reader.

2.2. Sample preparation

The main objective of sample preparation is the extraction of pure quartz grains from the raw sedimentary matrix. This is usually carried out by combining wet sieving and subsequent chemical treatment in order to remove carbonates, organics and other minerals (e.g., feldspars, magnetic minerals). In particular, hydrofluoric acid (HF) is not only used to remove all the minerals except quartz, but also to etch the external layer of the quartz grains for eliminating (or at least minimizing) the external alpha particles contributions. As a result of this operation, the external beta particle contribution to the dose rate may also be significantly impacted. Reporting full details of the analytical procedure should probably not be considered as mandatory, as this information is not directly useful to evaluate data reliability. However, it will indirectly affect the results as the preparation impacts the purity of the prepared samples. Consequently, we would suggest...
Table 1: Summary checklist detailing the minimum information that should be provided when reporting ESR dating methodology based on optically bleached quartz grains.

<table>
<thead>
<tr>
<th>Step</th>
<th>Minimum information that should be reported</th>
<th>Additional useful information that may be reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fieldwork</td>
<td>- Stratigraphic (unit/level) position of the samples</td>
<td>- Geological context and origin of the quartz grains</td>
</tr>
<tr>
<td></td>
<td>- Stratigraphic relationship between the dating event of interest and the sample being dated, i.e., whether the sample provides a direct, indirect, minimum, maximum, or equivalent age estimate for the event/artefact/object/fossil under consideration</td>
<td>- GPS coordinates of the site</td>
</tr>
<tr>
<td></td>
<td>- Geographic location and altitude of the sampled outcrop/site</td>
<td>- Additional sediment samples collected for water content or future laboratory analysis?</td>
</tr>
<tr>
<td></td>
<td>- If in situ measurements were carried out: (i) their position with respect to the ESR samples, (ii) the technique employed (e.g., TL dosimeter, gamma probe), (iii) its calibration, and (iv) data reduction procedure to derive dose rate values (e.g., “energy windows,” “threshold”)</td>
<td>- Pictures of the samples in their sedimentary context</td>
</tr>
<tr>
<td></td>
<td>- If in situ measurements were carried out: (i) their position with respect to the ESR samples, (ii) the technique employed (e.g., TL dosimeter, gamma probe), (iii) its calibration, and (iv) data reduction procedure to derive dose rate values (e.g., “energy windows,” “threshold”)</td>
<td>- Sampling conditions and precautions to minimize sunlight exposure</td>
</tr>
<tr>
<td>2. Sample preparation</td>
<td>- Initial grain size fraction selected</td>
<td>- Conditions of laboratory illumination during the preparation</td>
</tr>
<tr>
<td></td>
<td>- Conditions of HF etching (concentration and duration)</td>
<td>- Each step of the procedure, preferentially in chronological order (e.g., wet sieving, chemical reaction, magnetic separation, density separation)</td>
</tr>
<tr>
<td>3. Dose reconstruction</td>
<td>- Experimental conditions of the ESR measurements (experimental setup, acquisition parameters, number of repeated measurements, number of rotations in the cavity, temperature of the ESR measurements)</td>
<td>- Chemical products used (type and concentration)</td>
</tr>
<tr>
<td></td>
<td>- For the Al centre: bleaching conditions for the evaluation of the residual ESR intensity (UV simulator and lamp details, duration of the bleaching experiment)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Evaluation of the ESR signal intensity (peak-to-peak measurement, peak-to-baseline, deconvolution)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Corrections of the ESR intensities (sample weight, temperature of the cavity, receiver gain value, number of scans, mean value derived from tube rotations, averaging of the repeated measurements)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Equation of the fitting function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Data weighting used for the fitting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Fitting program and error evaluation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Error reporting nomenclature (whether errors are reported at 1 sigma or 2 sigma confidence levels)</td>
<td></td>
</tr>
<tr>
<td>4. Dose rate evaluation</td>
<td>- Techniques used to determine either the concentration of the radioelements in the sediment or the total alpha, beta, and gamma dose rate values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Origin (reference) of the conversion and correction factors that have been used: dose rate conversion factors, alpha and beta attenuation factors for spherical grains, water attenuations, alpha efficiency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Thickness, measured or assumed, removed from the grains by HF etching</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Details about the cosmic dose rate calculation: depth (thickness of the sediment cover above the sample), altitude, GPS coordinates, water correction and reference(s) for the equation used. In case of caves/rock shelters, some detail should be provided about how additional partial/complete shielding of bedrock has been factored into the equations used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Water content (% dry or % wet weight) value used (measured or assumed? if measured, specify how? If assumed, provide details about how a suitable value has been derived)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Whether equilibrium or disequilibrium in the U-238 and Th-232 series has been considered for dose rate calculation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Error reporting nomenclature (whether errors are reported at 1 sigma or 2 sigma confidence levels)</td>
<td></td>
</tr>
<tr>
<td>5. ESR age calculation</td>
<td>- Details about the age calculation program used and error evaluation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Error reporting nomenclature (whether errors are reported at 1 sigma or 2 sigma confidence levels)</td>
<td></td>
</tr>
</tbody>
</table>

1 Some aspects of the analysis may be the same as previously published, so that referring to another study may be sufficient.
2 This may be indicated in a figure showing the ESR signal that is analysed.
3 There is now an increasing number of software available to the community for dose rate and age calculations (e.g., AGE, DRAC, DRC). Consequently, it may be as simple as citing the corresponding publication for the software. In such cases, special care should be taken to ensure that the empirical water content term is expressed in the same terms used in the software (% dry or wet mass).
that each step of the procedure is briefly reported at least in supplementary material (e.g., conditions of laboratory illumination, information concerning the wet sieving, details of the chemical digestion, kind of magnetic and density separation, post-HF sieving), preferentially in chronological order. An example of a standard report for sample preparation may be found in Liu et al. (2010), Duval et al. (2015b), or Voinchet et al. (2007).

Instead, the basic minimum information that should be known here is the selected initial grain size fraction after sieving and the conditions of HF etching (concentration and the duration of the etching), as they have a direct impact on sample preparation. Both the Al and Ti centre ESR signals are apparently mostly depleted by UV wavelengths, primarily UVA and UVB (Tissoux et al., 2007), although mechanical resetting processes might also play a role in sedimentary settings (Liu & Grün, 2011). Laboratory bleaching experiments undertaken using sunlight simulators have shown that the Al signal reaches a minimum intensity after several hundreds of hours of bleaching, while the Ti-Li signal is fully reset in <50 h. In comparison, <4 h are required to zero the ESR signal of the Ti-H centre (see Figure 1 in Duval et al., 2017). However, it should be noted that these bleaching rates may vary greatly (albeit within the same order of magnitude) depending on the sample analysed and the experimental setup. A complete discussion of ESR signal bleaching may be found in Duval et al. (2017) and references therein. It is clear from existing experimental datasets that quartz ESR bleaching rates are significantly slower than those of quartz OSL signals (see comparison in Duval et al., 2017), and that short exposure of a few minutes to natural light, or several hours to UV-depleted laboratory lights, will have no measurable impact on the ESR signals. For this reason, ESR lighting condition requirements are not as strict as those employed for luminescence dating, although some basic precautions should nevertheless be taken (see some recommendations for sampling in Moreno et al., Accepted). Until further evidence demonstrating the opposite emerges, it is not considered essential to detail sample preparation lighting conditions in ESR papers.

2.3. ESR dose reconstruction

Acronyms usually employed in luminescence dating may also be used for ESR, depending on whether Single or Multiple Aliquot(s) and Additive or Regenerative dose methods have been employed (e.g. MAA, MAR, SAR, SARA, MARA, SAA). It could also be specified whether single grain or multiple grain analyses have been carried out, even if the former remains experimental in ESR dating (Beertens & Stesmans, 2005).

In most cases, ESR dose reconstructions of quartz grains are performed using a Multiple Aliquots Additive (MAA) dose approach, which means that the \(D_E \) value is obtained by back extrapolation of the fitting function to the abscissa axis. It is thus crucial to specify the number and the distribution of the irradiation dose steps (see discussions in Grün & Rhodes, 1991, 1992), as well as some basic information about the type and dose rate of the irradiation source (e.g., in Gy/h or Gy/s) that has been employed. Independently of whether ESR measurements have been performed at room temperature (for the Ge centre) or close to liquid nitrogen temperature (for Al and Ti centres), the following basic details about \(D_E \) measurement conditions should be specified:

- Experimental setup (type of spectrometer, ESR resonator, temperature control system).
- Acquisition parameters (microwave power, resolution, sweep width, modulation frequency, modulation amplitude, conversion time, time constant, number of scans, measurement temperature; see Grün (1992)).
- Number of rotations of the tube in the cavity for each aliquot and/or number of repeated measurements for each sample that have been carried out in order to evaluate the angular dependence of the signals due to grain heterogeneity and the repeatability/precision of the ESR data set.

Among the three main centres commonly used for dating purpose, the Al centre is unique in having an unbleachable component that gives rise to a residual ESR signal intensity. This residual signal must therefore be evaluated in order to avoid major \(D_E \) overestimation (Voinchet et al., 2003). Consequently, it is important to describe how this residual ESR intensity has been determined in the laboratory. For instance, quartz samples are sometimes simply directly exposed to natural sunlight to assess the unbleachable signal component. However, most of the time UV sunlight simulators are used to artificially bleach one aliquot: in this case, the type of simulator and lamps (electromagnetic spectrum covered), as well as the duration of the bleaching experiment should be specified.

The methods used to extract ESR intensities from the measured ESR spectra may vary from one centre to another. While there is apparent agreement in the scientific community regarding evaluation of the Al centre (Yokoyama et al., 1985; Toyoda & Falguères, 2003) or Ge centre (Falguères et al., 1991; Walther & Zilles, 1994), evaluation of the Ti centres remains somewhat debated (see Duval & Guilarte, 2015 and reference therein). Consequently, it is important to explain how the ESR intensities were evaluated (e.g. peak-to-peak measurement, peak-to-baseline, deconvolution) and which peaks were used for \(D_E \) determination. This may be simply shown in a figure (see examples in Liu et al., 2010; Tissoux et al., 2007).
Finally, the data reduction and analysis procedures used for \(D_E \) evaluation should be briefly described:

- Whether ESR intensities from repeated measurements were averaged out and corrected (e.g., according to weight, temperature variations, number of scans, receiver gain).
- Whether (and how) the residual ESR intensity has been taken in consideration in the evaluation of the \(D_E \) value (for the Al centre only). This is usually done following the total bleach approach, as described in (Forman, 1989). A figure may simply be provided (see Figure 4 from Voinchet et al., 2003)
- Basic details about the fitting procedure: the function that has been used (including preferably the equation or at least citing a previous paper where this is specified, as there may be slight variations of a given function, e.g. Duval, 2012), the data weighting, the fitting program, error evaluation and whether errors are reported at 1 sigma or 2 sigma confidence levels.

This last point is of crucial importance. Indeed, because of the use of the additive dose method for ESR dose evaluation, the \(D_E \) value is obtained by extrapolation of the fitted function (unlike the regenerative dose method where the \(D_E \) value is obtained by interpolation instead; see Forman, 1989). Consequently, the value of the \(D_E \) estimate is directly and significantly dependent on the fitting function and options employed (see Duval, 2012 and Duval & Guilarte, 2015 and references therein).

2.4. Dose rate evaluation

Unlike fossil teeth for which uranium uptake in dental tissue has to be modeled (e.g., Grün, 2009a), the internal and external dose rate associated to quartz grains is usually assumed to remain constant over time. Consequently, the basic dose rate equation may be expressed as follows:

\[
D = D_{int} + D_{ext} + D_{cosmic}
\]

where \(D_{ext} \), \(D_{int} \), \(D_{ext} \), and \(D_{cosmic} \) are the total, internal, external and cosmic dose rate components, respectively. ESR dating of quartz is mostly performed on grains whose diameter is between 60 and 300 µm, which means that the internal component, if existing, mainly comes from the alpha and beta particles contribution. Depending on the authors, the internal dose in quartz grains is usually either neglected, given the low concentrations of radioelements found in most quartz grains (e.g., Vandenberghe et al., 2008), or an assumed value is adopted (e.g., Duval et al., 2015a). Irrespective, the treatment of internal dose rate components should be clearly specified in the manuscript, particularly as it can constitute an important variable in environments with low external dose rates.

The external dose rate may be divided into several components as follows (detailed equations may be found in Grün, 1989):

\[
D_{ext} = [D_{\alpha} + D_{\beta} + D_{\gamma}]_{ext} + D_{cosmic}
\]

where \(D_{ext} \), \(D_{\alpha} \), \(D_{\beta} \), \(D_{\gamma} \), and \(D_{cosmic} \) are the alpha, beta and gamma dose rates, respectively. These components are directly calculated from the activities or concentrations of radioelements (mainly U-238, Th-232 and K-40) present in the quartz grains and surrounding environment. The technique used to obtain these values (ICP-MS and/or ICP-OES, High Resolution Gamma Spectrometry, alpha counting) should be specified, as they utilise very different amounts of material, and results obtained may be of variable representativeness for different components of the external dose rate. The measured radionuclide activities / concentrations are transformed into dose rate values using conversion factors that are specific to each element and the particle or ray emitted. The most commonly used are those published by Adamiec & Aiken (1998), recently updated by Guérin et al. (2011). It should be specified whether dose rate calculation has been performed by considering either secular equilibrium or disequilibrium in the U-238 and Th-232 series. If apparent disequilibrium is detected, then some discussion should also be provided about the possible effects on the final ages of assuming different time-dependent dose rate scenarios. As previously mentioned, the gamma dose rate may also be derived from \textit{in situ} measurements: in that case, the comments made in Section 2.1 should be taken into consideration.

These external dose rate values are then corrected according to different factors related to the site history or to the sample preparation, such as water content or grain size. Water content correction is crucial for the alpha, beta and gamma dose rate components: it should be specified if the value is expressed as a % of wet sediment weight or a % of dry sediment weight, whether this water content of the sediment has been measured or assumed, and how this has been taken into consideration in the dose rate calculation. Further details about this issue may be found in Grün (1994) and references therein. The reason/justification for using a particular assumed water content value should also be clearly stated in any study, i.e., the authors should specify what factors have been considered in deriving a representative assumed long term water content. The initial and final (after HF etching) grain size fraction will determine the value of the attenuation factors for the internal and external alpha and beta components. If the grains are sufficiently etched, the external alpha dose rate component may be simply eliminated from the external dose rate calculation. It is not mandatory to indicate the values of these attenuation factors, since these can be derived independently using initial and post-etching grain sizes. It is, however, important to specify the source of the attenuation factors used in the study. The values from Brennan et al. (1991) and Brennan (2003) for spherical grains have been widely used over the last decades. Updated values have recently been presented by Nathan (2010) and Guérin et al. (2012), taking into account grain size, shape, density, and the radioelements that are involved. Finally, the alpha efficiency value used for correction of the external and/or internal alpha dose rate (if not null) should be specified.

For the cosmic dose rate, it should be specified whether this component has been measured or estimated via exist-
Duval, Ancient TL, Vol. 35, No. 1, 2017

Table 2: Summary checklist detailing: (i) the minimum information that should be provided when reporting ESR dating results based on optically bleached quartz grain; and (ii) additional useful information that may be reported.

<table>
<thead>
<tr>
<th>Table</th>
<th>Summary Table 1</th>
<th>Summary Table 2</th>
<th>Figure 1</th>
<th>Figure 2</th>
<th>Table</th>
<th>Supplementary material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum information that should be reported</td>
<td>• Radioelement concentrations (ppm or %) or activities (Bq/kg) of the surrounding sediment used for the external dose rate calculation, depth below surface (in m), water content of the sediment (% dry or % wet weight)</td>
<td>• Value and associated error for each component of the dose rate (internal, external alpha, beta and gamma, cosmic), the total dose rate (in µGy/a or Gy/ka), the D_E (in Gy) and the calculated ESR age estimates (in ka or Ma)</td>
<td>• Examples of the ESR signal that has been measured</td>
<td>• Some examples of dose response curves</td>
<td>• Numerical estimators to evaluate goodness-of-fit for each sample (e.g., adjusted r^2 value, least-square values, chi-square values). This information can also be included in Figure 2 of the main manuscript and/or the figure with the DRCs in supplementary material</td>
<td>• Figures showing all the dose response curves (ESR intensities vs. Dose + the fitting function)</td>
</tr>
<tr>
<td>Additional information that may be reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Summary checklist detailing: (i) the minimum information that should be provided when reporting ESR dating results based on optically bleached quartz grain; and (ii) additional useful information that may be reported.

2.5. Age calculation

ESR age calculation is quite straightforward when the dose rate is assumed to be constant over time. In such cases, an age is simply derived from the division of the D_E value by the total dose rate. However, details should be given about how the errors have been calculated and propagated to the final age values. There is now a range of dose rate and age calculation software available to the community (among others, AGE, DRAC and DRC; see Grün, 2009b, Durcan et al., 2015, and Tsakalos et al., 2016, respectively). Although most of these have been designed for luminescence dating, they may easily be adapted to the specificities of ESR dating. Consequently, the age calculation process may simply require citing the corresponding publications where basic information (error calculations, dose rate conversion factors, correction factors) about the software is presented. Error reporting nomenclature should be specified, i.e., whether errors are reported at 1 sigma or 2 sigma confidence levels.

3. Reporting ESR results

ESR age estimates and associated results should be reported in several tables and figures (see a summary in Table 2). Usually, a series of summary tables including radioelement concentrations, and details of the dose rate and D_E components are sufficient.

In addition to these numerical data, several supporting figures should be provided. It is recommended to show at least one ESR spectrum for the signal that has been analysed, indicating how the signal intensity has been evaluated (e.g., see Toyoda & Falguères, 2003 for the Al centre, Walther & Zilles, 1994 for the Ge centre, and Beerten et al., 2008 for the Ti centres) as debate remains over this issue within the community for some paramagnetic centres. Alternatively, it may be possible to refer to a previous study where appropriate details have been provided elsewhere. The most important feature to provide is undoubtedly related to the Dose Response Curves (DRCs). Because the reliability of the D_E values is...
highly dependent on whether the function is well fitted or not through the experimental data points, some graphical examples of ESR DRCs must be presented in the main text (e.g., Duval et al., 2017). Ideally, all DRCs should be included in supplementary information (e.g., Duval et al., 2017) as this is the best way for the reader to evaluate the quality of the ESR data set and, thus, the reliability of the fitting results. In addition, it may be particularly useful to provide some numerical estimators (e.g., adjusted r^2 value, least square values, chi-square values) for the goodness-of-fit achieved for each sample, since this may be quite variable from one sample to another, even within a given site or section (e.g., Duval et al., 2017). Following on from these guidelines it may be worth discussing within the ESR dating community the interest of systematically providing the complete ESR data sets (i.e., ESR intensities and corresponding irradiation doses) in numerical format (spreadsheet).

4. Conclusion

To avoid misunderstandings it is worth mentioning here that the purpose of the present paper is not to standardise analytical procedures in the ESR dating community, or to provide recommendations for the most reliable analytical practices in ESR dating of quartz (see for example Moreno et al., Accepted for some fieldwork recommendations). We have instead aimed to provide some guidelines for reporting ESR methodology and results, in order to make sure that the basic minimum information is available for external critical assessment. A series of summary checklists are provided here in Tables 1 and 2. These recommendations are open to revision and should be considered as a starting point for further discussion. It is worth emphasizing that these recommendations may also be used as guidelines when peer-reviewing papers dealing with ESR dating results. In particular, they may be useful for potential reviewers who are not familiar with the specificities of this field.

It is common for ESR dating applications published by a given laboratory to employ the same analytical procedure, with very little variation from one study to another. Consequently, for some aspects of the ESR dating procedure it may be possible to refer to previous publications where the corresponding information has been detailed. This may be particularly useful if manuscript length is an issue. However, most journals now offer the possibility to include online supplementary information, which means that the restricted length of the main manuscript should no longer be a limitation for providing all the required information. This approach would ensure easy and direct access to the complete analytical procedure, and avoid the need to search through previous publications that may not be readily accessible.

Adhering to the suggested reporting requirements should enable more straightforward age and data re-assessments in light of progressive improvements in understanding of the ESR dating method. This may occur, for example, via the update of published parameters (e.g., dose rate conversion factors, alpha and beta attenuations) or the identification of more appropriate fitting functions, thereby enhancing the scientific vitality of the field.

Finally, it should also be emphasized that the recommendations discussed in the present work are only intended for ESR dating studies applied to optically bleached quartz grains. ESR dating applications involving other materials, such as fossil teeth, corals, carbonates, require the provision of different supporting information, as recommended by Grün (1992).

Acknowledgments

The authors would like to thank their colleagues geochronologists for sharing some useful information about their speciality. Lee Arnold (Adelaide University, Australia), Sébastien Nomade (LSCE, France) and Antoine Zazzo (MNHN, France) for Luminescence, Ar-Ar and Radiocarbon dating, respectively. MD’s research is currently funded by an ARC Future Fellowship Grant (FT150100215). Finally, the thorough review by Lee Arnold has contributed to greatly improve the scientific content, and the English, of this work. This is why he has been invited by the leading author to co-author this study.

References

Moreno, D., Richard, M., Bahain, J.-I., Duval, M., Falguères, C., Tissoux, H., and Voinchet, P. ESR dating of sedimentary quartz grains: some basic guidelines to ensure optimal sampling conditions. Quaternaire, Accepted.

Reviewer
Lee Arnold

Editor’s Note
The manuscript was reviewed by Lee Arnold. The authors decided that his review made significant contributions to the manuscript, which warranted his inclusion as co-author of the study. The Editor agreed to this change after the manuscript had been accepted.
Identifying systematic errors that are introduced by the measurement equipment is a necessary prerequisite for reproducible measurements and reliable results. However, technical artefacts often remain unpublished. Here we report on a sudden change of luminescence intensity observed while measuring IR-RF signals from K-feldspar extracts. The measurements were carried out on a lexsyg research reader. A lateral movement of the sample carrier up to 0.5 mm relative to the photomultiplier tube and the irradiation source, causes a change in the sample geometry. This movement results in inter-aliquot scatter during the measurement of IR-RF. Two solutions are discussed to remove this effect: (I) data post-processing and (II) design change by the manufacturer. Our study so far is limited to IR-RF measurements on a single luminescence reader and suggests due caution in the identification of such systematic errors.

Keywords: Luminescence, Infrared Radiofluorescence, Instrumentation

1. Introduction

It is assumed that the measured data are free from systematic errors caused by the instrument design. To identify and quantify the potential sources of systematic errors, measurement equipment is often tested rigorously before its routine use (e.g., Lomax et al., 2014). However, several sources of systematic errors do not necessarily reveal themselves during routine measurements. Some require time-consuming tests (e.g., Bray et al., 2002; Adamiec et al., 2011; Schmidt et al., 2011; Kadereit & Kreutzer, 2013) and the magnitude of the error may depend on the technical design (Kreutzer et al., 2013). Such errors often result in scattered data which hampers their direct discovery. Besides, the scatter might make publication difficult; the issue remains unreported and thus might be repeated by other groups.

At the IRAMAT-CRP2A in Bordeaux (France) several studies on infrared radiofluorescence (IR-RF) of potassium-enriched feldspar (K-feldspar) extracts have been undertaken since 2012. The IR-RF signal of K-feldspar is believed to provide a promising alternative to the so far established luminescence dating approaches, e.g., quartz SAR protocol (Murray & Wintle, 2000) or post-IR IRSL on feldspar (Thomsen et al., 2008). The IR-RF technique was introduced by Trautmann et al. (1999) and Erfurt & Krbetschek (2003) and later successfully applied by, e.g., Wagner et al. (2010). In contrast, Buylaert et al. (2012) raised considerable doubts on the applicability of the method for age determinations. Re-investigation of the IR-RF signal characteristics at the IRAMAT-CRP2A recently led to an improved protocol that uses stimulation at a higher temperature (here 70°C instead of room temperature) for recording the IR-RF signal (Frouin, 2014; Frouin et al., 2015; Huot et al., 2015; Frouin et al., 2017).

While conducting further methodological studies using fine grain (4-11 µm, gently crushed coarse grains) K-feldspar separates, we encountered an unexpected inter-aliquot scatter (Kreutzer, 2016). Such scatter was previously reported by Krbetschek et al. (2000) and later by Frouin et al. (2017) on coarse grains (100-200 µm) and has been interpreted as being due to variations in the properties of the individual grains and/or superposition of competing signals. When measuring the fine grain fraction (ca. 10^6 grains/cup) a low scatter is
expected due to signal averaging effects. However, to our surprise, we observed a high inter-aliquot scatter. The observation gave rise to the idea that the measurement device might cause this variation.

Here we report on a series of instrumental tests performed on a particular Freiberg Instruments lesxy research reader (Richter et al., 2013) at the IRAMAT-CRP2A. We present a case study to track down a repetitive, unwanted effect on this device. Our contribution continues a discussion initiated at the German LED 2016 in Emmendingen (Kreutzer, 2016).

2. Measurement setup

Measurements were carried out on a Freiberg Instruments lesxy research reader (Richter et al., 2013) at the IRAMAT-CRP2A, Bordeaux (reader id: 12-re-01-0007). The device is equipped with a 90Sr/90Y ring-source (Richter et al., 2012). For IR-RF signal detection a Chroma D850/40 interference filter was used in front of a Hamamatsu H7421-50 PMT. For bleaching, we used the built-in solar simulator (SLS). The SLS is equipped with LEDs comprising six different wavelengths (cf. Frouin et al., 2017). All bleaching and measurement settings followed the suggestions made by Frouin et al. (2017). Relevant protocol parameters are listed below.

The samples (BDX16646, BDX16650, BDX16651) used for the experiments originate from the Atlantic coast (Médoc) in the north-west of Bordeaux (France). Sample preparation was carried out using routine methods for preparing coarse grain feldspar samples (e.g., Preusser et al., 2008). The grain size of 100 200 µm was extracted by wet sieving. Chemical treatments comprised, HCl (10 %), H$_2$O$_2$ (30 %), LST heavy liquids (2.72 g cm$^{-3}$, 2.62 g cm$^{-3}$, 2.58 g cm$^{-3}$). The K-feldspar fraction was not further etched. The fine grain fraction (4-11 µm) was obtained by gentle crushing of the coarse grains with a mortar and applying the Stokes’law. Approximately 0.6 mg of sample material were settled on austenitic stainless steel cups1 delivered by Freiberg Instruments. All measurements were done in air.

The data analysis was carried out using the R package ‘Luminescence’ (Kreutzer et al., 2012, 2017).

3. Identifying an artefact

In the following section, we describe two independent IR-RF experiments that raised our suspicions about the reliability of the measurement equipment.

3.1. Experiment I

Our measurement protocol, henceforth called RF$_{70}$, is based on the IRSAR protocol by Erfurt & Krbetschek (2003); further developed by Frouin et al. (2017). It was applied to the fine-grained K-feldspar (FG-KFS) fraction of sample BDX16646. The RF$_{70}$ protocol consists of two IR-RF steps (natural: 3,600 s and regenerative: 10,000 s) separated by a bleaching (10,000 s) and a pause (3,600 s). Due to an artificial bleaching prior to the measurements (bleaching settings according to Frouin et al., 2017), the expected residual dose was supposed to be zero for both aliquots. The pause between the preceding artificial bleaching and the measurement was up to 2 days. The results of the measurements are shown in Fig. 1. Both regenerated IR-RF curves (RF$_{reg}$) are similar in shape and intensity (right plot). In contrast, the reset (‘natural’) IR-RF (RF$_{nat}$) curves (left plot), differ by ca. 4 % in their maximum intensity. Please note that, even the RF$_{nat}$ was artificially bleached before measurement, we chose the term RF$_{nat}$ for consistency with the published literature.

The equivalent doses (D$_e$) for the two aliquots were estimated with the horizontal sliding approach (Frouin et al. (2017)) and resulted in apparent doses of 0.9 [Q$_{5}$: -0.9 ; Q$_{97.5}$: 2.7] Gy (black curve) and 49.5 [Q$_{5}$: 45.0 ; Q$_{97.5}$: 54] Gy (red curves).2 These results are unexpected for two reasons: (1) Due to the amount of grains (ca. 105) on each cup the inter-aliquot scatter was expected to be negligible and (2) the apparent dose should be approx. 0 Gy for both aliquots. In other words, the maximum RF$_{nat}$ signal intensity difference of ca. 4 %, results in an apparent dose ca. 55 times higher for the second aliquot in comparison to the first aliquot.

Frouin et al. (2017) (supplement) showed that the relation between RF$_{nat}$ and RF$_{reg}$ can be written as

$$RF_{nat}(t) = RF_{reg}(t + t_a) + \varepsilon_t$$

where ε_t is the residual signal at time t within the co-domain $t \in \{ t_{min}, \ldots, t_{max}\}$. The simplification considers RF$_{nat}$ to be an extract of RF$_{reg}$. Since the RF$_{nat}$ curves in Fig. 1 (left) have different intensities, one would expect that they represent sections of the RF$_{reg}$ curves in Fig. 1 (right). Hence, the red curve would have a flatter slope plotted than the normalised curve shows. Nevertheless, the normalised curves shown in Fig. 2 (left) reveal that both RF$_{nat}$ curves have a similar shape leading to the speculation whether the determined dose is a measurement artefact.

1VA steal, quality: X15CrNiSi25-21, number: 1.4841, inner diameter: 7.95 mm, outer diameter: 9.95 mm, thickness bottom: 0.49 mm

2The terms Q$_{5}$ and Q$_{97.5}$ refer to the lower 2.5% and the upper 97.5% quantiles, respectively.
3.2. Experiment II

The second experiment originally aimed at investigating potential short-time fading. The question whether the IR-RF suffers from anomalous fading (Wintle, 1973) is controversial and is discussed in the literature (e.g., Buylaert et al., 2012). However, so far no evidence for fading of the IR-RF signal has been presented. The sequence described in Table 1 aimed at detecting any short-term fading. The sequence consists of three steps: A pause of 3,600 s interspersed two IR-RF steps carried out at the SLS position (without bleaching).

Table 1. Measurement sequence used to investigate the short-term fading of the RF_{70} signal.

<table>
<thead>
<tr>
<th>#</th>
<th>Step</th>
<th>Pos.</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bleaching at 70 °C for 10,800 s</td>
<td>SLS</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>IR-RF measurements for 1,000 s at 70 °C after a stabilisation period of 900 s, channel resolution 15 s/channel</td>
<td>β-source</td>
<td>IR-RF</td>
</tr>
<tr>
<td>3</td>
<td>Pause for 3,600 s</td>
<td>SLS</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Return to step 2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Four aliquots of the FG-KFS sample BDX16650 were measured. The sample was used in previous experiments with negligible sensitivity change. First, any residual signal was reset using the bleaching settings by Frouin et al. (2017) (Table 1, step 1). The full sequence was repeated three times for each aliquot.

The results for the four aliquots (represented by different colours) are shown in Fig. 3. Line styles indicate repeated cycles for the same aliquot. The pause of 3,600 s is indicated in the figure (please note the gap in the scale for the x-axis).

Figure 3 shows that (1) the IR-RF signals differ considerably between aliquots, which indicates that the observation made in Fig. 1 (similarity of the RF_{reg} of two aliquots) was coincidence, since this pattern could not be reproduced. (2) Although the general curve shapes appear similar, the intensities vary randomly with repetition. (3) The IR-RF signal after the pause is in two out of twelve cases higher (red circle) and for the remaining cases lower than the IR-RF signal before the pause. If the IR-RF signal of this particular sample did suffer from fading, the IR-RF signal after the pause would be higher in all cases. Nevertheless, the results of this experiment do not exclude a short-term IR-RF signal fading, but the experiment raised further questions about the reliability and reproducibility of the measurement system. Moreover, the IR-RF emission process cannot explain the observed differences in the IR-RF signal intensities.

Therefore further experiments were carried out with the goal of discovering the reasons for the observed phenomenon.

4. Isolating instrument effects on results

4.1. Hypotheses

Assuming that a sudden change in the IR-RF intensity cannot be explained by the underlying physical IR-RF stimulation and emission processes, the observations need to be attributed to the used measurement system (software/hardware). Considering the design of the lexsyg research system (Richter et al., 2013), we hypothesised that the sudden change in the IR-RF sensitivity might have the following sources:

- A change in detection efficiency caused by the hardware (e.g., saturation effect in the PMT),
- A change in detection efficiency caused by the control software (e.g., buffer overflow),
- A change in the measurement geometry,
- A combination of reasons mentioned above.

We did not further investigate a change in detection efficiency caused by the control software since we did not have access to the source code of the lexsyg research control software. For the geometry change a further distinction can be made between (A) a drift of the sample carrier on the sample arm (cf. Appendix: Fig. 13 for a technical drawing showing...
4.2. Background measurements

To test the overall reliability and reproducibility of the irradiation and the detection system, our first experiment aimed at repeatedly measuring the IR-RF background without a sample carrier on the sample arm and without a load and unload cycle in between. Therefore the sequence was modified manually after being created with the Freiberg Instruments LexStudio2 software and consisted of the steps listed in Table 2.

Table 2. Background measurements without sample carrier and without load and unload step.

<table>
<thead>
<tr>
<th>#</th>
<th>Step</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IR-RF for 10,100 s at room temperature, IR-RF last 100 s: closed shutter</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pause of 60 s under the SLS position</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Return to step 1</td>
<td>-</td>
</tr>
</tbody>
</table>

The last 100 s were recorded while the shutter in front of the β-source was closed (red dashed line). The measurements were repeated ten times. The results are shown in Fig.4. Due to technical limitations, the pause of 60 s was not recorded and is not shown in the figure.

The measurements overlap and therefore cannot be distinguished in the figure. The results indicate a stable and reproducible IR-RF background with no sudden sensitivity change. This experiment was repeated with the following modified settings: (A) IR-RF for 1,000 s, 20 repetitions and (B) with an empty sample carrier and the sample arm under the source for 10 s, with load and unload cycle, 70 repetitions. All experiments gave consistent results and are not further reported. To summarise, the background measurements (with and without sample carrier) indicated no apparent technical problem, but showed a highly reliable and stable system.

4.3. Pulsed IR-RF measurements

Pulsed IR-RF measurements aimed at constructing a consecutively recorded presumed continuously decaying IR-RF curve, similar to the one shown, e.g., in Fig.1. Except for the first channel (opening of the shutter), the combined pulsed IR-RF curve increments should result in a curve similar to a continuously recorded IR-RF curve. For the experiment, we used the previously measured FG-KFS sample (BDX16646). The sample was bleached before measuring using the internal SLS for 10,800 s, following the recommendations made by Frouin et al. (2017) (cf. Table 1, step 1). The sequence is listed in Table 3. 150 s of stimulation are followed by a pause of 1 s plus the time needed for the closing of the shutter located in front of the irradiation source. The stimulation-pause-cycle was repeated 30 times. Two aliquots were measured for one experiment, and the experiment was repeated three times. The results are shown in Fig. 5. The dashed lines indicate the applied pause under the irradiation source. No sample arm movement was assumed between the pause and the IR-RF measurements.

Table 3. Pulsed IR-RF sequence.

<table>
<thead>
<tr>
<th>#</th>
<th>Step</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IR-RF measurements at 70 °C for 150 s, temperature stabilisation prior stimulation for 900 s</td>
<td>IR-RF</td>
</tr>
<tr>
<td>2</td>
<td>Pause of 1 s under β-source</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>IR-RF measurements at 70 °C for 150 s, no temperature stabilisation</td>
<td>IR-RF</td>
</tr>
<tr>
<td>4</td>
<td>Pause of 1 s under β-source</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Return to step 3</td>
<td>-</td>
</tr>
</tbody>
</table>

The results reveal several unexpected effects.

- According to the sequence design the pause between each new IR-RF measurement should be 1 s. Instead, the time varied between 174 s and 179 s,
• the pause between the first and the second IR-RF signal appears to be even much longer,
• for all signals recorded during the 150 s intervals the intensity of the 1st channel was lower than for the 2nd one,
• the intensities recorded during the intervals show the expected decaying trend, but intensity levels vary considerably between subsequent intervals.

The long pause between the IR-RF measurements is the most striking observation. This pause is caused by a movement of the sample arm between each IR-RF step. After the pause of 1s under the closed β-source, the sample arm moved to the SLS position and from there for an internal recalibration to the calibration position (located between the maintenance position and TL-extra position, cf. Richter et al., 2013), before finally moving back to the irradiation position. Additionally, the photomultiplier tube (PMT) was switched off after each IR-RF measurement and restarted, including a temperature stabilisation phase, before any IR-RF signal detection (Andreas Richter, personal communication, March 2017). The time needed for the sample arm re-calibration and/or the temperature stabilisation of the PMT varies by a few seconds so that the effective pause between all IR-RF measurements varied between 174 s and 179 s. The pause between the first IR-RF measurement and the following one was attributed to a faulty set timestamp in the XSYG-file and thus is not real. The lower signal intensity of the first channel is attributed to the movement of the shutter in front of the irradiation source (approx. 100 ms; cf. supplement Frouin et al., 2017).

Further tests were carried out to determine whether the variation of the IR-RF signal intensity correlates with either the (A) on/off cycle of the PMT or (B) the sample arm movement itself.

4.3.1 Pulsed IR-RF - variation 1

To investigate the influence of the PMT run mode (on/off vs. continuous) and the sample arm movement (stopped vs. moving) on the IR-RF signal, the hardware control configuration file was modified manually. To consecutively exclude factors influencing the measurements, four different measurement modes were tested:

1. PMT mode: on/off | sample arm: moving
2. PMT mode: continuous | sample arm: stopped
3. PMT mode: on/off | sample arm: stopped
4. PMT mode: continuous | sample arm: moving

Setup #1 had already been tested in the previous experiments and was thus not repeated. Measurements with modes #2 to #4 were based on the pulsed IR-RF experiment described above (Table 3) using the same sample BDX16646 (FG-KFS). Before measuring the sample was reset using the internal SLS (similar bleaching settings as described above). The same aliquot was used for all experiments. The signal was not reset between each measurement. However, every new measurement mode required a reset of the reader hardware, i.e. every test was interrupted by a full system re-initialisation.

The results of the experiments are combined in Fig. 6. The dashed line indicates pause times. Green and red lines distinguish data measured without (#2 and #3) and with (#4) movement of the sample arm. Similar to Fig. 5 the time passed between the first and the second cycle is an artefact of the data format.

Figure 6 is divided into three areas, separating modes #2, #3 and #4. Figure 6-#2 shows data recorded with the PMT in continuous mode and without movement of the sample arm. Pauses between stimulation cycles were fixed at 5 s and only the shutter of the β-source was closed between cycles. The channel resolution was 15 s/channel, i.e. 10 data points were recorded during each 150 s interval and the pause of 5 s cannot be observed in Fig. 6-#2. The results do not reveal any sudden sensitivity change. Due to the off/on cycle of the PMT in mode #3, including temperature stabilisation, the recorded time between each cycle increased to 75 s. The IR-RF curves in Fig. 6-#3 show no considerable intensity change, indicating a high stabilisation and constant detection efficiency of the PMT. In contrast, mode #4 (Fig. 6-#4) included movement of the sample arm and the time between each IR-RF cycle increased to ca. 170 s. Our data show that for this experiment the IR-RF curves vary markedly for each cycle. Instead of an expected signal decrease of ca. 3 % from the 4th to 5th cycle, the IR-RF signal increases first by ca. 3 % (6th cycle) and by another 4 % for the 7th cycle. To increase the number of observations this experiment (setup #4) was repeated for 31 cycles, giving similar results (not shown).

These results indicate that the (1) on/off cycles of the PMT have no measurable influence on the signal intensity. The results also indicate that the unexpected IR-RF signal intensity changes are correlated with the movement of the sample arm and are caused by a change in the measurement geometry. Nevertheless, the results cannot reveal whether the geometry change is a product of an incorrect and varying sample arm positioning under the β-source or a movement of the sample carrier and/or the sample material itself triggered by the sample arm movement. To cancel out the one or the other possibility we performed another pulsed IR-RF experiment.

4.3.2 Pulsed IR-RF - variation 2

In the lexyg research reader(s) operated at the IRAMAT-CRP2A the heating element is covered by a stainless steel plate, which is fixed by three screws (cf. Fig. 7). A custom made sample carrier (‘teddy-bear’ sample carrier), was mounted on the plate covering the heating element on the sample arm (Fig. 7) and fixed with two screws to prevent a movement of the sample carrier on the sample arm.\(^3\)

The original experiment listed in Table 3 was repeated

\(^3\)Please note the here described experiments are highly experimental, using non-automatised, manual settings. The manufacturer recommends none of these experiments, and wrong settings can seriously damage the measurement hardware.
Figure 6. The figure shows a combination of three different pulsed IR-RF measurements. (#2) The PMT was operated in a continuous mode and the sample arm was not moving between each IR-RF cycle. (#3) The PMT was switched off and on between each shutter closing; the sample was not moving. (#4) The PMT was running in continuous mode, but the sample arm was allowed to move between each IR-RF simulation cycle. All measurements were carried out on one aliquot of the FG-KFS fraction of sample BDX16646. Dashed lines indicating passed time between each cycle. The dotted-dashed line separates the three different experiments. Colours emphasise the results. For further details see main text.

Figure 7. Photo of the sample arm with the heating plate and the special sample carrier (‘teddy-bear’ disc) fixed on the top. The picture was taken at the TL extra position Richter et al. (2013) with this ‘teddy-bear’ disc. No other changes to the measurement settings were applied, i.e. the sample arm was allowed to move between each IR-RF cycle and the PMT automatically switched off and on. To be able to track individual grains, the natural coarse grain (100-200 µm) KFS fraction of sample BDX16646 was used instead of the bleached fine grain KFS fraction. The grains were attached to the disc using silicon oil and a 4mm mask. No SLS bleaching was applied. Results of this experiment are shown in Fig. 8. No unexpected IR-RF intensity change was observed during the IR-RF cycles. From this observation, we conclude that the believed geometry change is not related to a wrong positioning of the sample arm itself but a movement of the sample carrier on the sample arm. Photos of the sample carrier were taken before and after the experiment. No unwanted grain loss or grain movement on the disc is observed if silicon oil is used.

Figure 8. Results of pulsed IR-RF measurements on the coarse grain fraction of sample BDX16646 using a special sample carrier (‘teddy-bear’ disc). The disc was manually fixed on the stainless steel plate covering the heating element of the sample arm. The dashed lines indicate the real pause between each IR-RF measurement, except the first pause, which is data format artefact.
4.4. Varying heating temperature

Figures 5, 6 and 8 show that intensity of the first IR-RF cycle is always slightly lower than it would be expected from the overall trend of the signal decay. The first cycle differs from the others due to the additional temperature stabilisation over 900 s (Table 1) under the closed shutter of the β-source (administered dose due to Bremsstrahlung ca. 1 mGy). Such stabilisation was not carried out for the subsequent cycles, where the heating element was allowed to passively cool down before the temperature was increased again to 70 °C. Due to the high thermal inertia of the heating element, the measured temperature between the IR-RF curves was never lower than 60 °C.

To ensure that our conclusions were not biased by unwanted changes of the stimulation temperature, we conducted an experiment varying the applied measurement temperature. Therefore, the heating ramp was actively modulated allowing temperatures between 50°C and 90°C (cf. Fig. 9). The IR-RF signal of sample BDX16646 (fine grain, KFS) was recorded continuously. Prior to measurement, the sample was reset using the internal SLS.

Figure 9. Preset heating profile as used for the ‘varying heating temperature’ experiment. After a stabilisation phase of 900 s the temperature is alternated between, (1) 70 °C and 50 °C and (2) between 70 °C and 90 °C.

Figure 10 (upper) shows the recorded IR-RF signal (black curve, ‘NIR PMT’), the lower plot shows the temperature of the heating element recorded by the internal sensor in the heating element (red curve, ‘Heating element’). The IR-RF detection started after a temperature stabilisation phase of 900 s (dashed line marked with ‘1’). Initially, the IR-RF signal remained stable even when the temperature was lowered to 50°C, but dropped with a small delay while the temperature was increased again to 70°C (‘2’). The following IR-RF signals decrease sharply if the temperature is lowered and increase if the temperature is increased (‘3’, ‘4’, ‘5’). The strongest decrease was observed after the temperature was first increased to 90°C (‘4’) and then lowered to 70°C (‘5’).

In contrast, for the experiments presented in Section 4.3 the maximum temperature was limited to 70°C (‘2’). The results show that temperature variations influence the IR-RF signal (e.g., Frouin, 2014). However, they cannot explain the observed light level changes, caused by the geometry change, but the chosen test sequence may have introduced an additional data scatter.

Figure 10. Results of the varying heating temperature experiment. The upper plot shows the recorded IF-RF signal and the lower plot the recorded temperature of the heating element (not the sample) using an internal sensor. Dashed lines and numbers in the plot label observations. The 2nd x-axis indicates the administered dose in Gy. For details see main text.

5. Discussion and further implications

Our findings demonstrate that the observed variation of the IR-RF signal intensity can be attributed to a change in the sample geometry. This geometry change appears to be induced by a movement of the sample carrier on the sample arm during its movement from one position in the reader to another. Krbetschek et al. (2000) considered the individual grain composition (non-emitting, less emitting grains) of each aliquot as the main factor for inter-aliquot scatter. Additionally, Erfurt (2003), Erfurt & Krbetschek (2003) and Erfurt et al. (2003) emphasised the general importance of a stable sample geometry. The original IRSAR protocol by Erfurt et al. (2003) explicitly demands a bleaching without geometry changes, but without giving further details, e.g., thresholds for allowed (or not allowed) geometry changes.

For the investigated lexsyg research reader the general sample geometry appears to be unchanged, and the sample arm positioning seems to be precise. Nevertheless, our experiments revealed that the sample carrier does not remain stable on the sample arm causing a drop or a rise in the signal intensity from IR-RF cycle to IR-RF cycle.

5.1. What type of movement?

The question remains what type of movement occurs. The technical design (cf. Fig. 7) allows the sample carrier to drift laterally up to 0.5 mm, depending on the diameter of the sample carrier. The drift is limited by the screws on the metal plate covering the heater. Another possibility is a rotation of the sample carrier, which is potentially unlimited. To investigate the type of movement, photos of marked sample carriers on the sample arm were taken between arm movements. These experiments were performed on the lexsyg research systems at the IRAMAT-CRP2A in Bordeaux (France) and at the Justus-Liebig-University of Giessen (Germany). The results indicate that the sample carrier is likely to rotate and drift (Fig. 11).
5.2. Reasons for the movement

It is a tedious task to identify the reason for the movement beyond doubt, since the reasons may differ from reader to reader, and some of the systems might be not affected at all. For example: After its first weeks of operation, the system in Bordeaux suffered from a vibration of the sample arm. This issue was solved by a change of the drive chain. Such vibration can cause a drift of the sample carrier. Nevertheless, no vibration of the sample arm was observed for the lexsyg research readers in Giessen and Bordeaux in the course of these experiments.

Excluding this potential error source, it appears more likely that the drift and rotation of the sample carrier are favoured by a combination of two factors: (I) the radial movement of the sample arm (radial acceleration) and (II) a temperature-induced tension and bending of the metal plate covering the heating element. The heating element and the metal plate are made out of different materials (Andreas Richter, personal communication, March 2017). Differing thermal expansion coefficients force a faster expansion of the metal plate, which is fixed by the attachment screws. This setting is likely to cause a bending of the metal plate, producing a pivot point. If the sample arm starts the radial movement, the sliding friction is lowered, and the sample carrier can drift and/or rotate. In Bordeaux, the sample arm was removed from the reader for inspection and the bending of the covering metal plate has been confirmed.

The resulting sample carrier movement may appear small in absolute units (≤ 0.5 mm), but is significant concerning the typically measured grain size (4 µm up to 250 µm). Whether the observed effect correlates with the grains size has not been tested.

5.3. Impact

Our results proved an intensity change caused by the sample carrier movements. However, the final impact on the D_e cannot be easily quantified. It depends on the IR-RF curve shape of a sample and the position of the observed light level on the curve. In other words, the impact in absolute terms is higher if the observed signal is close to saturation. In Fig. 12 we try to provide an estimate of the impact of a particular relative change of intensity caused by the measurement equipment on the final D_e. The parameters for the shown IR-RF curve were obtained via curve fitting from the RF$_{nat}$ curve shown in Fig. 1. Figure 12A simulates the impact of a 5% intensity change for a normalised intensity of 0.84 (max. 1). Assuming that the unbiased D_e has an arbitrary value of 2935, an increase of the light level (no curvature change) would result in a D_e of 1908 (ca. −35%) and 4414 (ca. +50%) for a light level decrease, respectively. Figure 12B shows the relative impact on the D_e for five different levels of intensity changes (isolines).

The simulations demonstrate the curve shape caused leverage effect of a few percent of intensity variation on the final D_e. Thus, even minor intensity changes have a significant impact on the final D_e and should be avoided.

5.4. Correction approach

An important other question is whether and how the encountered effect can be corrected. An obvious solution would be a re-design by the manufacturer to maintain a stable sample geometry. Freiberg Instruments have already developed a new heating element without any covering metal plate. This re-design has been subject to preliminary tests in Freiberg (Germany) using a lexsyg research provided by the manufacturer. For the tests three different types of sample carriers: Al cups, stainless steel cups (henceforth VA) and Ni cups were placed on the re-designed sample arm. Photos were taken after each movement of the sample arm. No sample carrier movement was observed for Al cups and Ni cups. In contrast, VA cups (similar to the cups used in Bordeaux and Giessen) still showed a considerable movement (rotation and drift). Hence, the used VA sample carriers were re-polished to remove any irregularities in thickness, and the tests were repeated. However, the procedure could not reduce the sample carrier movement, which indicates that the used VA sample carriers suffer from distortion stress. To overcome this problem the production process of the carriers must be modified. According to Freiberg Instruments, future plans include stress relief annealing during the produc-
Figure 12. Impact simulation of light level changes on the final D_e. (A) The grey shaded area indicates the impact on the final D_e if the IR-RF intensity is increased (1908) or is decreased (4414) by 5%. (B) Isolines showing the expected relative deviation from the ‘unbiased’ D_e for different percentages of light level change. The crossed rectangle in both curves marks a similar change of light level and its impact in both plots. Both figures based on curve parameters obtained via fitting from sample BDX16646 FG-KFS and are limited to them. For further details see main text.

We further re-analysed the samples investigated by Frouin et al. (2017) and we found, except for sample BT706 (20.3 ± 3.5 ka instead of 28.2 ± 8.7 ka) no ‘improvement’ of the ages towards a better match with the independent age control. All other results remained similar within errors, but the coefficient of variation (inter-aliquot scatter) was reduced in 6 out of 9 cases by 3% for sample FER3 up to 49% for sample BT706. Thus, it appears that a correction by vertical sliding may partly help to reduce the inter-aliquot scatter and correct for the above-described signal intensity change. The remaining inter-aliquot scatter may be attributed to natural grain variation as suggested by Krbetschek et al. (2000) and supported by a study on single grains by Trautmann et al. (2000).

5.5. Further implications

Our results show the overall importance of a stable sample geometry for measuring IR-RF. We, therefore, recommend cross-checking results obtained with automatic systems and pay attention to effects described above.

Furthermore, the presented experiments are limited to IR-RF measurements only. However, there is no reason to believe that the movement of the sample carrier only affects IR-RF measurements. Therefore, we cross-checked optically stimulated luminescence (OSL) quartz calibration measurements carried out between 2015 and 2017 using Risø calibration quartz batch 90. In total, the results of six machines available at the IRAMAT-CRP2A were compared: Two Risø TL/OSL DA20 (e.g., Bøtter-Jensen, 1997), two lexsys SMART (Richter et al., 2015) and two lexsys research readers; this includes the lexsys research reader investigated in this study. We found no evidence for a higher coefficient of variation. Nevertheless, taking into account the small num-

Until these changes have been made, we tested a data post-processing approach. Three assumptions were made:

- The change in the luminescence intensity is caused by a focus change under the PMT, i.e. the emission is dominated by different grains (of the sample aliquots),
- the IR-RF signal shape is not significantly affected due to an averaging effect of the multiple grain aliquot,
- bleaching and irradiation are homogeneous over the area of the metal plate.

The net effect would be a change in detection sensitivity without a change in the IR-RF signal shape. These assumptions allow for a vertical sliding of the RF_{nat} curve instead of only a horizontal sliding as suggested previously (Frouin et al., 2017). In other words, to obtain the D_e of a sample the RF_{nat} curves were moved horizontally and vertically (x- and y-direction, but no rotation) until the best match with the RF_{reg} was found. The new position which was obtained by searching the global minimum for the squared residuals from RF_{nat} and RF_{reg} was taken as best fit of both curves.

We tested this approach with the curves from Fig. 1. For the red curve of samples BDX16646 (FG-KFS) this correction results in an apparent dose of 9 (Q_{2.5}: 7.2 ; Q_{97.5}: 108) Gy (red curves), instead of 49.5 (Q_{2.5}: 49.0 ; Q_{97.5}: 54) Gy (red curves). The results of the black curve RF_{nat} (Fig. 1 left plot) remained unchanged. Although the expected dose was 0 Gy, the inter-aliquot scatter was reduced markedly by ca. 80%.

4 Later tests carried out by Freiberg Instruments showed no sample carrier movement for the new setup even for VA cups. However, this could not further be verified before the manuscript was finished.
ber of observations (total number of measured aliquots per system: 25 to 30) such an effect cannot be excluded. Therefore we recommend that each system is tested independently.

5.6. Limitations of this study

We investigated sample carrier movements on lexsyg research systems in Bordeaux, Giessen and (briefly) in Freiberg. On all tested systems, sample carrier movements were observed. However, for the system in Freiberg with the re-designed sample arm, the movement was limited to VA cups only. For the system in Giessen, the sample arm movement appeared to be slightly lower than for the system in Bordeaux. Nevertheless, the detailed IR-RF measurements presented here were only carried out on one system in Bordeaux. From re-analysed IR-RF measurements performed on the system in Giessen, we have no clear evidence for effects on the IR-RF signal itself. Furthermore, we did not investigate whether the sample carrier preparation (grain mounting: ‘monolayer’ vs. ‘multilayer’) might influence the observed change in signal intensity.

6. Conclusions

A non-systematic luminescence intensity change while measuring the IR-RF signal of K-feldspar was identified. The change leads to a higher inter-aliquot scatter in measured dose values. We identified a lateral shift (up to 0.5 mm) and/or a rotation of the sample carrier on the heater plate covering the heating element. We further conclude:

• Our experiments are limited to a particular lexsyg research reader installed at the IRAMAT-CRP2A.
• We observed sample carrier movements for lexsyg research readers at the luminescence laboratories in Bordeaux and Giessen. However, clear evidence for an effect on the IR-RF signal was observed for the reader in Bordeaux only.
• We tested a re-designed sample arm at Freiberg Instruments, which showed no sample carrier movement for Al and Ni cups, but still for VA cups. The movement of the latter is believed to be caused by distortion stress.
• The impact of the intensity change on a D_e is sample dependent and cannot be properly quantified. However, due to the stretched exponential curve shape, even minor intensity changes cause a significant impact on the D_e.
• We tested a data post-processing approach to correct for the unwanted IR-RF signal intensity change combining vertical and horizontal curve sliding. The method was capable of reducing the inter-aliquot scatter for the tested samples by 3% up to 49%. However, it remains unclear whether this approach is capable of fully correcting the observed change in signal intensity.
• No statistical evidence was found for a higher inter-aliquot scatter for OSL on the same reader, though further measurements are needed to confirm these results.

Finally, our results show that unwanted instrument effects are not always directly visible, but they are capable of considerably biasing measurement results. Thus, the increased complexity of the measurement systems demands a careful differentiation between system induced effects and sample properties.

Acknowledgements

Our manuscript benefited considerably from constructive input by Ashok Singhvi and Regina DeWitt. The authors further thank Guillaume Guérin for cross-checking the irradiation source calibration results. We thank Andreas Richter for his support while modifying the stack of the lexsyg research reader enabling the conducted experiments and for discussing the results. Rico Schweigel carried out the tests with the re-designed sample arm. The work of Sebastian Kreutzer is financed by a programme supported by the ANR n° ANR-10-LABX-52. Madhav Krishna Murari is supported by the German Research Foundation (DFG A/C: 62201694).

Appendix

Figure 13. Technical drawing after Richter et al. (2013) showing the layout of the measurement chamber of a lexsyg research reader.

References

Kreutzer, S. *Lab report: IR-RF and should we care about the a-value?*. German LED 2016, 2016-11-04 to 2016-11-06, Emmendingen, Germany, 2016.

Reviewer

Ashok Singhvi, Regina DeWitt
I develop a novel method for determining the activation energy, effective frequency factor, and kinetic order values for natural and regenerative TL signals. This ‘post-isothermal TL’ method reveals that for the blue-green emission of the low-temperature TL peak, the apparent trap depth in measured bedrock K-feldspar samples increases to a depth of ≥ 1.9 eV as measurement temperature increases, at which point it reaches a plateau in some samples. If this plateau value is the true depth of the trap, the frequency factors are measured to decrease as measurement temperature increases, an observation consistent with the recent conception that feldspar luminescence (IRSL and TL) results from excited-state tunneling to randomly-distributed centers.

Three archived drill cores were sampled at depths corresponding to burial temperatures ranging from -4.1 to 60.2°C. With higher ambient temperatures, there is a linear increase in the feldspar TL $T_{1/2}$ value (measurement temperature at half-maximum emission intensity) and a reduction in signal intensity. This behavior can be replicated by isothermal treatments in the laboratory. I interpret this behavior as reflecting the continuum of trap lifetimes present in feldspar TL, an observation that I substantiate with additive dose experiments and a numerical model.

I collected bedrock samples along vertical and longitudinal profiles within a glacial valley to investigate their thermal history. Using the relationship observed with the drill core samples, I successfully predict the ambient temperature of these samples from their $T_{1/2}$ values. By measuring the single-aliquot regenerative (SAR) equivalent dose (D_e) values at the natural $T_{1/2}$ positions, I estimated the maximum time that each sample has been at its current surface temperature. These ages correlate with periods of local glacial activity and offer insight into the erosional mechanisms involved, including post-glacial high-elevation plateau erosion: a key prediction of the glacial buzzsaw hypothesis.

Although a maximum age is useful, a more desirable solution is a continuous $T-t$ history. The final chapter pursues this goal with samples taken from a rapidly-uplifting Yucaipa Ridge tectonic block (YRB). I introduce a multiple-aliquot additive-dose (MAAD) measurement protocol that can be used to estimate the degree of dose saturation as a function of measurement temperature, $\frac{d}{dN}(T)$. This MAAD TL $\frac{d}{dN}(T)$ method capitalizes on the earlier observation of feldspar TL, that site stability increases with measurement temperature. Using the same kinetic model used to describe the drill core samples, I simulate two previously-proposed geologic cooling scenarios for the YRB and the model is found to be sensitive enough to discriminate between them. I then measure MAAD TL signals for several YRB samples, convert these to $\frac{d}{dN}(T)$ functions, and use Monte Carlo simulations to invert for each sample’s thermal history. Despite the vertical
relief being only about 0.4 km between the highest and lowest samples, the difference in trap saturation is significant, suggesting that this technique may be well suited to resolving Quaternary landscape evolution. I interpret the exhumation histories of these samples to reflect a combination of post-uplift relaxation of isotherms and a lagged erosional response in the form of fluvial downcutting.

Debra Colarossi
Developing luminescence chronometers to establish the timing of late Quaternary environmental changes in South Africa

January 2017
Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
Degree: Ph.D.
Supervisors: Prof Geoff Duller, Prof Stephen Tooth

The predominantly dryland climate of interior South Africa precludes the widespread preservation of organic proxy records. Various potential geoproxy records exist, but their exploitation requires accurately constrained chronologies. This study investigates the development of two luminescence chronometers, quartz OSL and K-feldspar post-IR IRSL. At four sites across the eastern interior (Moopetsi, Voordrag, St Paul’s and Goedgedacht), these chronometers are used to constrain the timing of: (i) the late Quaternary initiation of deposition; (ii) intervening phases of erosion, deposition and pedogenesis; and (iii) the current deep erosional phase.

The value of using paired ages (i.e. determining quartz and K-feldspar ages from the same sample) becomes apparent, particularly at Voordrag where quartz OSL reaches saturation within the limit of radiocarbon dating. Paired chronologies show good agreement for younger samples (<24 ka) but systematic underestimation of quartz ages for older samples.

Investigation of the post-IR IRSL protocol showed that signal transfer between the Lx and Tx measurements caused systematic underestimation of older feldspar ages. Dose recovery tests showed that it was not possible to recover a large given dose (400 Gy) when using a small (5 Gy) test dose. Two solutions were investigated, specifically increasing the dose MET-pIRIR, or pMET-pIRIR) procedure for single grains. This led to the development of a modified post-IR IRSL protocol.

The derived quartz and K-feldspar single grain chronologies show that the initiation of deposition was not synchronous at the four study sites, and ranges from ~153–65 ka. Intervening phases of erosion, deposition and pedogenesis remain difficult to constrain but broad inferences regarding climatic and geomorphic drivers can be made. The current phase of deep erosion appears to be linked to two periods of abrupt climate change, the 3.8–4.2 ka arid event and the Little Ice Age.

Yujie Guo
Luminescence dating of late Quaternary deposits in the Nihewan Basin, northern China: chronology and implications for Palaeolithic archaeology and environmental reconstructions

August 2016
School of Earth & Environmental Sciences, University of Wollongong, Wollongong, Australia

Degree: Ph.D.
Supervisors: Professor Richard G Roberts (Principal Supervisor); Dr. Bo Li (Co-supervisor)

The Nihewan Basin is a key region to study Quaternary palaeoenvironmental, palaeontological and Palaeolithic histories in East Asia. Although many studies have been carried out over the last few decades, many questions remain unanswered. This thesis focuses on three of the most debated questions about the Nihewan Basin: 1) when and why did the Nihewan palaeo-lake disappear and the Sanggan River form?; 2) did the Middle Palaeolithic stage really exist in the Nihewan Basin?; 3) was the Upper Palaeolithic microblade technology developed from the local small-tool technology in the Nihewan Basin or was it imported from elsewhere? These questions are debated mainly due to the lack of firm chronological control for the late Quaternary stone artefact-bearing sediments in the basin. This thesis, therefore, aims to answer these questions from a chronological perspective, by studying six stone artefact-bearing lacustrine or fluvial sedimen- tary sections. My specific aims are to: 1) reveal the time of transition from the Nihewan palaeo-lake to the Sanggan River; 2) test the assignment of sites to the so-called Middle Palaeolithic in the Nihewan Basin based on their numerical chronologies; and 3) establish a chronological sequence for the small-tool and microblade technologies of the Upper Palaeolithic stage in the Nihewan Basin.

To achieve the first two aims, three Palaeolithic sites Motianling (which captures the final stages of lacustrine sediment deposition), Queergou (representing lakeshore sediments) and Banjingzi (located on a fluvial terrace of the Sanggan River) have been selected for study. These sites have been assigned previously to the Middle Palaeolithic based mainly on stratigraphic correlations (at Motianling and Queergou) and uranium-series (U-series) age estimates (at Banjingzi), corresponding to a time period between about 30 and 140 thousand years (ka) ago. This time definition is the most commonly used criterion for assigning sites to the Middle Palaeolithic. However, the lithic assemblages at these sites are very different, and this might reflect the incorrect assignment of these three sites to the Middle Palaeolithic stage, given the lack of firm age control at each of them.

The sediment samples collected from the Motianling and Queergou sites were dated using the newly developed pre-dose multi-elevated-temperature post-infrared IRSL (pre-dose MET-pIRIR, or pMET-pIRIR) procedure for single aliquots composed of potassium feldspar (K-feldspar) grains, where the acronym IRSL refers to infrared (IR) stimulated luminescence.
The Banjingzi site was dated using the MET-pIRIR procedure applied to single grains of K-feldspar. I first tested and applied the pMET-pIRIR procedure using the lacustrine and fluvial sediments in the Nihewan Basin. The IRSL ages for the cultural layers at Motianling, Queergou and Banjingzi are 315 ± 13 ka, 268 ± 13 ka and 86 ± 4 ka, respectively, suggesting that the Motianling and Queergou sites should be assigned to the Lower Palaeolithic on chronological grounds, while the age of Banjingzi is consistent with its Middle Palaeolithic attribution. The ages obtained for these sites also indicate that the Sanggan River formed between about 270 and 86 ka ago, but details of the process of demise of the Nihewan palaeo-lake and the formation of the Sanggan River, and the factors responsible for these events, need to be further investigated in the future.

Xibaimaying has been considered as the latest small-tool site in the Nihewan Basin, based on the U-series ages of about 15 and 18 ka on animal bones. To address the third aim, I redated this site using well-established optically stimulated luminescence (OSL) dating methods for single grains of quartz. The resulting OSL ages indicate that the cultural layer was deposited 46 ± 3 ka ago, during marine isotope stage (MIS) 3 - more than 20 millennia earlier than previously thought and also older than the earliest primitive microliths found at the site of Zhiyu, which has a calibrated 14C age of ∼31–39 ka cal BP (where BP means before present: AD 1950 by correction), and the earliest typical microliths known from the site of Youfang (dated by OSL to ∼26–29 ka). These new ages for human occupation of Xibaimaying remove support for the existing, commonly held concept of parallel development of the small-tool and microblade industries in the Nihewan Basin during the Upper Palaeolithic. However, reliable age estimates from additional sites are needed to confidently infer the nature of the chronologically relationship between these two Upper Palaeolithic industries and the associated toolmakers.

Two additional microblade sites, Erdaoliang and Dadiyuan, were also dated as part of this study, to further contribute to the Palaeolithic chronological framework for the Nihewan Basin. Both sites were dated using conventional OSL dating methods for single aliquots and single grains of quartz. The OSL ages indicate that the cultural layers at Erdaoliang and Dadiyuan were deposited 24.1 ± 1.8 and 8.9 ± 0.5 ka ago, respectively.

The thesis concludes with a generalised Palaeolithic chronological framework for the Nihewan Basin, extending from ∼1.95 million years (Ma) ago to ∼7.0 ka ago, based on the luminescence chronologies for the sites dated in this study and on the numerical chronologies developed for other sites in the basin. Suggestions are also made for possible future lines of enquiry, to resolve outstanding questions about the history of human occupation and environmental change in northern China.

Gang Hu

Optically stimulated luminescence dating of glacial sediments in the Laohugou Valley, western Qilianshan and the Basongcuo Catchment, eastern Nyainquentanglha

May 2014

Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Degree: Ph.D.
Supervisor: Chaolu Yi

The Tibetan Plateau is often referred to as the Third pole of the world, with 1/3 of the mountain glaciers outside the polar regions. Widely distributed landforms and sediments produced by Quaternary glaciations offer us an opportunity to understand glacier changes associated with climatic change. However, insufficient chronological data of glacial deposits limit our understanding of this process. Optically stimulated luminescence (OSL) has been applied widely in dating of Quaternary sediments in the areas where organic material for 14C dating is lacking. However, partial bleaching is a common problem for dating glacial sediment and can lead to age overestimation.

In this study, Quaternary glaciations in the Laohugou Valley of the western Qilianshan and the Basongcuo Catchment of Eastern Nyainquentanglha were identified by field survey. Eight samples from the Laohugou Valley and 39 samples from the Basongcuo Catchment were collected from the glacial sediments for OSL dating, respectively. The fractions of coarse-, medium-, fine-grained quartz grain and polyminal fine grain were dated. The results show that the OSL signals of all the sediments are dominated by the fast component and that the thermal transfer effect is very low, suggesting the quartz is suitable for OSL dating. The fine-grained quartz is better bleached than the medium grain in glacial sediment of the Basongcuo Catchment. Some of the fine grains might come from aeolian dust in local area. The post-IR IRSL ages of the polyminal fine grains are much older than those of quartz grains, suggesting feldspar is poorly bleached. Using small aliquot and minimum age model, we can gain reliable OSL ages for the glacial sediments.

The OSL dates show that the glaciers advanced during the global LGM and re-advanced or kept in the Late Glacial in the Laohugou valley. The outwash terrace was formed at 10 ± 1.7 ka and 0.5 ± 0.7 ka, suggesting extensive glacial retreat in that time. The moraines in the Basongcuo Catchment could be assigned to four stages. The ages of Stage-I, -II and -III occurred between 0.2–1.3 ka, ~7.5 ka and 10–13 ka, respectively. The glacier displayed several short-time advances during Stage-IV, which lasted from ~30 to ~16 ka.

The OSL dates show that the glacier advance in the Laohugou valley of the western Qilianshan was consistent with the glacier advance of the eastern Qilianshan. Considering the annual precipitation increases notably from west to east, we argue that the temperature mainly contributed to the glacier advance. The OSL dates of the glacial sediments
in the Basongcuo Catchment, Eastern Nyainquentanglha are consistent with those in the surrounding area. Comparing the ages of glacier advances with the insolation, effective moisture and speleothem records from Dongge-Hulu cave, we argue that the glacier advances in the Basongcuo Catchment were also controlled by temperature.

Those who are interested in this thesis can ask the Dr Gang Hu (hugang@itpcas.ac.cn) or Dr. Chaolu Yi (clyi@itpcas.ac.cn) for provision.

Amrit Kumar Prasad

Understanding defect related luminescence processes in wide bandgap materials using low temperature multi-spectroscopic techniques

January 2017

Center for Nuclear Technologies, Technical University of Denmark, Riso Campus, Roskilde 4000

Degree: Ph.D.

Supervisors: Dr. Mayank Jain (main supervisor) and Dr. Torben Lapp (co-supervisor)

Feldspar is a dominant, naturally occurring mineral that comprises about ~60% of the Earth's crust. It is widely used in optically stimulated luminescence (OSL) dating of sediments to obtain chronologies of past events as old as ~0.5 Ma, and thus, plays a crucial role in understanding Quaternary climate changes, landscape development and human evolution and dispersal. Optical properties of feldspar originate from a) a wide band gap (~7.7 eV), b) crystal defects (impurity atoms and distortions) that create localized energy states within the bandgap, and c) conduction band and the low-mobility band tail states, which play a role in charge transport. Despite a rapid progress in the infra-red stimulated luminescence (IRSL) dating technique using feldspar, a clear understanding of luminescence process is still lacking. A better understanding of feldspar as a physical system is expected to lead to its improved exploitation as a luminescence chronometer. My Ph.D. investigates the nature of luminescence generating defects and processes in feldspar, and tests whether the intra-defect relaxation transitions may be successfully used to improve the dating technique. It includes mapping the energy states of defects individually and characterizing their emission process, understanding the dynamics of the excited-state relaxation and tunneling, and defect interactions with the crystal lattice and the band tail states. The experiments were carried out using the Risø station for CryOgenic LUminescence Research (COLUM) and a high sensitive spectrometer attached to the Risø TL/OSL reader. The key findings of my Ph.D. research are summarize as follows:

1) I discovered the excitation-energy dependent emission (a red edge effect) in the green-orange emission in feldspar, and demonstrated that this effect arises from interaction of a deep lying defect with the band tail states. This effect can be used to measure the band-tail width through relatively simple spectroscopic (photoluminescence) measurements.

2) My studies on Fe3+ show that its deep red emission varies with site dependence of Fe3+ even within a single sample. Furthermore, it is observed that there exists an excitation-energy dependence of the main radiative transition (4fT\textsubscript{1} → 6A\textsubscript{1}) in Fe3+: this is possibly related to spin-lattice interaction.

3) I explored a model analogue system for feldspar called YPO\textsubscript{4}:Ce,Sm, in order to understand IRSL produced by excited-state tunneling. For the first time, a precise mapping of the energy levels of the metastable Sm2+ was carried out, and the temperature-dependent relaxation lifetime of Sm2+ excited state was determined using the defects internal radiative-transition. It was then demonstrated that OSL decay curves resulting from optically induced, sub-conduction band electron transfer (Sm2+ → Ce4+) can be adequately described using the prevalent mathematical model of excited-state tunneling.

4) Finally, inspired by the results of YPO\textsubscript{4}:Ce,Sm, I discovered a Stokes-shifted, infra-red photoluminescence (IRPL) signal arising from the principal trap in feldspar (excitation ~ 1.4 eV (885 nm), emission: ~ 1.3 eV (950 nm)). Current methods of OSL rely on transfer of electrons from the principal trap to holes located elsewhere in the lattice; this is by default a destructive readout of dosimetric information. Furthermore, OSL (or IRSL) suffer from sensitivity changes because of competition in the recombination process, leading to possible uncertainties in the dose measurement. In contrast to IRSL, the IRPL signal arises from intra-defect excitation and the subsequent radiative relaxation within the principle trap (i.e. the trap giving rise to IRSL). IRPL is a non-destructive readout technique and the lifetime of the excited state relaxation is estimated to be ~40 µs at 7K and ~29 µs at 295 K. The IRPL signal increases with dose and the preliminary dating investigations indicate that this signal contains an athermal non-fading component, likely arising from the trapped electrons that do not have a nearby hole center.

There are two important technique developments in my thesis. Firstly, based on the model of the red edge effect, a simple method is proposed for estimation of the width of the band tail states in feldspar. Secondly, it is shown that the new IRPL signal can be used for non-destructive probing of dosimetric information in the principal trap. The IRPL technique is likely to provide a) a robust understanding of the behavior of electron trapping centers in feldspar, b) a possibility of selective probe of non-fading electrons without using any thermal assistance, and c) precise measurements of luminescence from very small volumes by repeated readout. These possibilities open new windows for development of robust dating methods as well as advanced imaging techniques. I envision that the IRPL signal will significantly impact the field of optical dating.

A PDF of this thesis can be downloaded from: https://www.researchgate.net/profile/Amit_Prasad10 or http://orbit.dtu.dk
Various geological applications

- aeolian

- alluvial fan

- bioclastic

- cave

- coastal

- colluvial

- estuary

- fault

- **fluvial**

- marine

- soil

- tephra

- travertine

- volcanic

Archeology applications

Various ESR applications

Basic research

Dose rate issues

Dosimetry

Instruments

Portable system

Review

15TH INTERNATIONAL CONFERENCE ON LUMINESCENCE AND ELECTRON SPIN RESONANCE DATING

WELCOME TO LED 2017 IN CAPE TOWN, SOUTH AFRICA

We are pleased to invite you to the 15th International Conference on Luminescence and Electron Spin Resonance Dating (LED2017) to be held in Cape Town, South Africa, in September 2017. The LED series of meetings are held every three years and provide a forum for discussion of new developments on stimulated luminescence and its applications with emphasis on retrospective dosimetry. The conference in Cape Town will be hosted by Rhodes University and will be the latest in a well-established series going back nearly 40 years with the last three held in Canada (2014), Poland (2011) and China (2008).

TOPICS

1. Basic Physical Processes and Materials’ Characteristics
2. Instrumentation and procedures
3. Advances in equivalent dose determination
4. Advances in dose rate determination
5. Innovative dating approaches
6. Applications in Earth and Planetary Sciences
7. Applications in Archaeology
8. ESR: advances and applications

IMPORTANT DATES

ABSTRACT SUBMISSION DEADLINE
1 APRIL 2017

NOTIFICATION OF ACCEPTANCE
31 MAY 2017

EARLY REGISTRATION DEADLINE
30 JUNE 2017

WORKSHOP
10 SEPTEMBER 2017

CONFERENCE
11-15 SEPTEMBER 2017

POST CONFERENCE TRIP
16-17 SEPTEMBER 2017

PAYMENT DEADLINE FOR EARLY REGISTRATION
30 JUNE 2017

PAYMENT DEADLINE FOR LATE REGISTRATION
15 AUGUST 2017

MANUSCRIPT SUBMISSION DEADLINE
31 JANUARY 2018

SCIENTIFIC ADVISORY COMMITTEE

Christina Ankjaergard, Wageningen University, Netherlands
Andrzej Bluszcz, Politechnika Śląska, Poland
Makaka Chithambo, Rhodes University, South Africa
Geoff Duller, Aberystwyth University, UK
Mauro Fasoli, Università di Milano-Bicocca, Italy
Rainer Grün, Griffith University, Australia
Jo L., University of Wollongong, Australia
George Polymeris, Ankara University, Turkey
Frank Preuresser, University of Freiburg, Germany
Mathieu Duval, Griffith University, Australia

LOCAL SUPPORT TEAM

Makaka Chithambo, Rhodes University, South Africa, Chairman
Musa Chinyamakobvu, Rhodes University, South Africa
Angel Nyirenda, Rhodes University, South Africa
Schadrack Nsongyinyama, Rhodes University, South Africa
Sunil Thomas, Rhodes University, South Africa
Mary Evans, University of the Witwatersrand, South Africa
Ekenezon Oniya, Adekunle Ajasin University, Nigeria
Folorunso Ogundare, University of Ibadan, Nigeria

CONFERENCE CHAIRMAN
Makaka L. Chithambo

Department of Physics and Electronics
Rhodes University, PO BOX 94
Grahamstown 6140, South Africa
Tel: 046 603 8450
Fax: 046 622 8049
Email: mchithambo@ru.ac.za
Aims and Scope
Ancient TL is a journal devoted to Luminescence dating, Electron Spin Resonance (ESR) dating, and related techniques. It aims to publish papers dealing with experimental and theoretical results in this field, with a minimum of delay between submission and publication. Ancient TL also publishes a current bibliography, thesis abstracts, letters, and miscellaneous information, e.g., announcements for meetings.

Frequency
Two issues per annum in June and December

Submission of articles to Ancient TL
Ancient TL has a reviewing system in which direct dialogue is encouraged between reviewers and authors. For instructions to authors and information on how to submit to Ancient TL, please visit the website at: http://www.ecu.edu/cs-cas/physics/ancient-timeline/ancient-tl1.cfm

Journal Enquiries
For enquiries please contact the editor:
Regina DeWitt, Department of Physics, East Carolina University, Howell Science Complex, 1000 E. 5th Street, Greenville, NC 27858, USA; Tel: +252-328-4980; Fax: +252-328-0753 (dewittr@ecu.edu)

Subscriptions to Ancient TL
Ancient TL Vol. 32 No.2 December 2014 was the last issue to be published in print. Past and current issues are available for download free of charge from the Ancient TL website: http://www.ecu.edu/cs-cas/physics/ancient-timeline/ancient-tl5.cfm