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Abstract
‘BayLum’ is an R-package that facilitates the
application of Bayesian models to the field of
OSL dating. Here we present two recent feature
updates to ‘BayLum’, significantly reducing
computation time and improving general use.
The first feature allows users to parallelize the
computations involved in the MCMC sampling
of values, while the second introduces the
ability to extend a ‘BayLum’ model, which
has run to completion without converging.
All updates are automatically available with
‘BayLum’ v0.3.1.

Keywords: Age model, Chronology, MCMC
algorithm, Luminescence dating, OSL

1. Introduction
‘BayLum’ is an R – package (R Core Team, 2022) that

gives users the tools to easily apply the Bayesian models
presented in Combès et al. (2015) and Combès & Philippe
(2017) to luminescence dating data. See, for example, the
work of Heydari et al. (2020), where an OSL chronology is
provided for the paleolithic site of Mirak, Iran, using ‘Bay-
Lum’. In this work, they showed that the age uncertainty can
be reduced significantly by imposing stratigraphic order – a
feature of ‘BayLum’. Since the introduction of ‘BayLum’
(Philippe et al., 2019), ‘BayLum’ has grown by drawing re-
sources from the ever-developing R-landscape around it. The

latest iteration of ‘BayLum’ (v0.3.1) (Christophe et al., 2023)
now employs `runjags' (Denwood, 2016) as the R to JAGS
(Plummer, 2003) facilitator, which has made possible two
key features of ‘runjags’ to be used inside ‘BayLum’: (i)
MCMC-sampling parallelization and (ii) the ability to extend
a model (drawing additional MCMC samples after a model
has already run to completion). This paper will highlight
these two new features of ‘BayLum’ and show examples of
how to use them.

2. Problem: Stationary distributions require
long run times

The Bayesian models produced with ‘BayLum’ infer pa-
rameter estimates (such as equivalent dose and age) from
marginal posterior distributions of these parameters. This is
to say that ‘BayLum’ takes the output of the Bayesian ap-
proach, a posterior distribution, and evaluates the dimensions
of individual variables. ‘BayLum’ constructs these distri-
butions via Markov Chain Monte Carlo sampling. The re-
sult of the MCMC sampling is a chain of values, each link
consisting of a combination of values from all parameters in
the Bayesian model. A distribution can then be constructed
for each parameter, given its value in each link. To let the
MCMC converge on the solution, we skip a number of the
first iterations (burn-in phase) and only then begin construct-
ing the distributions. To be confident in the results, the dis-
tributions must be stationary – that is, the location and shape
of each distribution must not change if we draw additional
samples. ‘BayLum’ assesses if distributions are stationary
and independent of initialization of the MCMC by construct-
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ing multiple chains instead of one. If the distributions from
each chain agree with each other, we can be confident that
the chains have converged to a single solution. By default,
‘BayLum’ uses three MCMC chains – a suitable balance be-
tween the power to detect non-convergence and the computa-
tional resources required (the number of chains is fully cus-
tomizable by the user). ‘BayLum’ formalizes the question of
convergence by incorporating as output the Rubin and Gel-
man diagnostic (Gelman & Rubin, 1992), which compares
within-chain and between-chain variance. A common rule
of thumb is that the upper 95 % credible interval limit of this
diagnostic value indicates convergence when below 1.05.
For many practical applications of OSL dating, the number
of iterations (or links in each chain) required to reach con-
vergence is high (>500 000) – and higher still when ‘Bay-
Lum’ models incorporate many OSL samples as is the case
with high-resolution chronologies. Because MCMC chains
are to be processed consecutively, the overall process can
become very time-consuming. For example, using a com-
puter equipped with a 11th Gen i7-1185G7 clocking at 3.0
GHz (which has a relatively high single-core threading per-
formance rating), runtimes can extend beyond several days.
Furthermore, even when a model completes, not all of the
model’s parameters may have converged – a result which
could require a complete re-run of the ‘BayLum’ modelling
function.

3. ‘BayLum’ feature: MCMC parallelization
Previous versions of ‘BayLum’ could only process

MCMC chains consecutively using a single processor core.
With parallelization, it is now possible to assign n chains out
onto n CPU processor cores. This allows each chain to be
processed concurrently, and the runtime will (ideally) ap-
proach 1/n when compared to the time for running n chains
using a single core. We tested this using ‘BayLum’ models
where OSL example sets GDB3 and GDB5 were used (both
included with the ‘BayLum’ package) to produce 2-sample
models. Figure 1A shows that when running 4 000 total
iterations per chain, we see a significant runtime reduction
when running the model using parallelization (jags_method
= "rjparallel") as compared to using only a single CPU
core (jags_method = "rjags"). Reduction increases with
the number of MCMC chains constructed in the model,
which is what we expect. We observed a reduction of 65 %
for a 3-chain setup and 72 % for a 4-chain setup. The mi-
nor differences we see from the theoretical 1/n-rule most
likely arise from runtime inside the ‘BayLum’ model func-
tions, which is not due to the iteration of MCMC sampling.
We also see from Figure 1B that this reduction is consis-
tent with increasing numbers of iterations. Example 1 (Sec.
3.1) shows how to apply parallelization in ‘BayLum’ v0.3.1.
Note that our model testing was carried out using the High-
Performance Computing Cluster “Sophia” (Technical Uni-
versity of Denmark, 2019). The same code run on a desk-
top PC will show the same relative reductions but may show
poorer runtimes, not only because of lower overall compu-

tation power but also - and more likely - due to advanced
power throttling measures of modern CPU architectures im-
plemented to prevent overheating in prolonged high-load sit-
uations.

3.1. Example 1

In the example below, which we kept as simple and
user-friendly as possible, we show how to achieve paral-
lelization. The key argument to set is jags_method =

"rjparallel". We use the example data included within
‘BayLum’ at installation.

Example 1: R Code: Achieving parallelization
1 # MCMC parallelization example ####

2 # load libraries

3 library(BayLum)

4

5 # load example DataFiles GDB3 and GDB5

6 data(DATA1)

7 data(DATA2)

8

9 # combine DataFiles

10 # (we now have a 2-sample DataFile)

11 DF <- combine_DataFiles(DATA1, DATA2)

12

13 # construct BayLum model

14 BayLum_model <- AgeS_Computation(

15 DATA = DF,

16 SampleNames = c("GDB3", "GDB5"),

17 Nb_sample = 2,

18 BinPerSample = c(1, 1),

19 LIN_fit = FALSE,

20 Origin_fit = TRUE,

21 Iter = 1e+03,

22 burnin = 5e+02,

23 adapt = 5e+02,

24 n.chains = 3,

25 jags_method = "rjparallel"

26 )

4. ‘BayLum’ feature: extend the ‘BayLum’
model

Unfortunately, ‘BayLum’ model chains will not always
converge within the specified number of iterations. In pre-
vious versions of ‘BayLum’, the ‘BayLum’-model would
likely need to run again with a higher number of iterations.
The added runtime of re-running ‘BayLum’ can now be
avoided by extending the non-converged model instead of
building it again from scratch. In this case, all non-converged
model iterations are treated as burn-in. See Example 2 (Sec.
4.1) for an illustration of how to extend ‘BayLum’ models.
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Figure 1: (A): Runtime reduction in percentage when running a ‘BayLum’ model with fixed iterations vs a varying number
of MCMC chains using GDB3 and GDB5 example sets included within ‘BayLum’. (B): Runtime in seconds vs the num-
ber of MCMC iterations for a 3-chain ‘BayLum’ model also using GDB3 and GDB5. All estimates show mean±sd (n=8).
To run the model, we used the High-Performance Computing cluster named “Sophia” owned by DTU. Arguments "rjags"
and "rjparallel" entail whether ‘BayLum’ is run using a single CPU core ( ’rjags’) or run in parallel on several cores
('rjparallel').

4.1. Example 2
In Example 1 (Sec. 3.1), a model was built to show how

parallelization could be achieved. The Rubin and Gelman
convergence diagnostics from that model reveal evidence
that not all MCMC chains converged (see "D (Dose)" for
GDB5, Table 1).

Table 1: Rubin and Gelman convergence diagnostics for
three parameters of the ‘BayLum’-model in Example 1. We
show only the upper 95 % credible interval limit.

Sample A (Age) D (Dose) sD (Stand. deviation)
GDB3 1.006 1.022 1.004
GDB5 1.007 1.065 1.000

However, we can now add iterations to the ‘BayLum’-
model in order to achieve convergence:

Example 2: R Code: Extending model
1 # extend MCMC sampling of BayLum-model

2 BayLum_model_extended <- AgeS_Computation(

3 DATA = BayLum_model,

4 SampleNames = c("GDB3", "GDB5"),

5 Nb_sample = 2,

6 BinPerSample = c(1, 1),

7 LIN_fit = FALSE,

8 Origin_fit = TRUE,

9 Iter = 1e+04,

10 burnin = 0,

11 adapt = 5e02,

12 jags_method = "rjparallel"

13 )

Rubin and Gelman’s convergence diagnostics now show
we can be confident about all the parameters (Table 2).

Table 2: Rubin and Gelman convergence diagnostics for
three parameters of the ‘BayLum’ model from example 1
(Sec. 3.1). We show only the upper 95 % credible interval
limit.

Sample A (Age) D (Dose) sD (Stand. deviation)
GDB3 1.002 1.007 1.000
GDB5 1.001 1.010 1.004

5. Conclusions

In this report, we introduced two feature updates to the
R-package ‘BayLum’. Together, they allow users to paral-
lelize MCMC sampling and extend BayLum-models - both
features significantly reduce the time needed to build a vi-
able ‘BayLum’-model.
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Abstract
This paper communicates a suitable laboratory
protocol for settling the 4 – 11 µm fine grain
fraction for OSL dating of archaeological
samples from museum artefacts sampled using
the minimum extraction technique. It provides
a step-by-step methodology to facilitate adapt-
ing this protocol for use more broadly and
demonstrates its ability to successfully isolate
the fine grain fraction from tiny samples.

Keywords: fine grain settling, Stokes’ Law,
minimum extraction technique, ceramics,
museum artefacts, optically stimulated lumi-
nescence

1. Introduction
The use of polymineral fine grains in luminescence dating

has long been established and routinely used where a larger
grain size fraction cannot be obtained. With fine grain dating,
using typically 4 – 11 µm grains, the alpha component of the
dose rate, with a range of 20 µm, irradiates the entire grain, so
there is no need to remove an alpha attenuation layer (Wintle
1997; p. 770). Of course, including the alpha component
to the dose rate requires estimation of the alpha efficiency,
which will vary depending on the composition of the sample.

The fine grain method was first described by Zimmerman
(Zimmerman, 1967, 1971), although subsequent alterations
have been made to the Zimmerman method (e.g. Frechen
et al. 1996; Fleming 1975; Fleming 1979, p. 58-59). While
the method has both its pros and cons (a full discussion of
this topic is beyond the scope of this paper), it is still very
useful in a wide range of applications in luminescence dating

today, particularly in archaeological settings (e.g. Anderson
& Feathers 2019; Feathers 2009; Janz et al. 2015; Zink &
Porto 2005).

The minimum extraction technique (MET) and extended
MET sampling protocols are used to optimize OSL dating
of archaeological artefacts housed in museum collections
by extracting minute sample sizes (Hood & Schwenninger
2015; Hood 2022). MET protocols generally yield a suffi-
cient quantity of fine grains for dating; however, as is to be
expected, the process for isolating the 4 – 11 µm grain size
fraction from the MET sample necessitates an adapted proto-
col compared to more standardised fine grain protocols, ow-
ing to the tiny sample sizes being worked with. Below, this
adapted methodology, using the principle of Stokes’ Law, is
presented.1

2. Methodology: Fine grain sample preparation

Samples extracted using the (extended) MET protocol are
in the form of drilled ceramic powder. A four-step process,
as set out below, allows accurate isolation of the 4 – 11 µm
fine grain fraction from the bulk MET sample.

Step 1: Dry sieving. When the MET sample is ini-
tially sieved (using small mesh or electro-formed hand held
sieves2) to extract the coarse grain fraction, the < 90 µm grain
size fraction is retained for the fine grain technique.3

1It is also possible to sieve out the polymineral fine grain fraction of a
MET sample using size specific electro-formed sieves, however the cost of
such equipment and the labour-intensive cleaning process can be a deter-
rence.

2An electro-formed sieve is created by electro-deposition of a metal that
allows precision construction of very fine sieves.

3It should be noted that other fine grain methodologies frequently incor-
porate an H2O2 and/or HCl wash into their fine grain preparation. However
this has, to date, been avoided for MET samples owing to the extremely
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Step 2: First settling. To isolate the 4 – 11 µm fraction from
the < 90 µm fraction, it is necessary to settle the grains in a
water column, using Stokes’ law to determine the correct set-
tling times for procuring this size fraction. The first settling
step requires the removal of the ~ 12-90 µm grain size frac-
tion using Stokes’ Law (see, for example, Batchelor 2010,
p.230-235). A calculation was made to determine the time it
would take grains > 11 µm to settle in a solution of deionised
water, based on the density and viscosity of the water, the
temperature of the water, and the height of the graduated
cylinder in which they were being settled.4

After adding the water to the cylinder, the MET sample is
placed on a sheet of weighing paper, then rolled into a funnel
so as to rapidly shoot the sample directly into the centre of
the water column to avoid it adhering to the cylinder walls. A
rapid movement of the sample into the water column is nec-
essary to help break the surface tension of the water which
can hold the MET sample owing to its extremely low mass.
In the event of the sample staying on the surface of the water
column, the surface tension can be broken by gently agitating
it with a pin (or similar).

A 10 mL glass graduated cylinder is used for this first
settling step owing to both its small size being the most ap-
propriate for ease of dealing with MET-sized samples, and
the glass facilitating the decanting of the sample.5 Result-
ing settling times are presented in Table 1; the settling times
presented in Table 1 and Table 2 are based on an average
temperature of 19 °C; however, the ambient temperature of
the deionised water was observed to fluctuate between 19 °C
and 26 °C and thus the water used for each sample was mea-
sured prior to settling, and the exact temperature was used to
calculate settling times).

Cylinder Cylinder Drop height Settling
volume height (average) time
10 mL 8.6 cm 4.3 cm 6 min 46 sec

Table 1: Settling times (at 19 °C) to remove the 11 – 90 µm
grain size fraction.

At the end of the allotted settling time, the water column
now holds in suspension grains ≤ 11 µm, and the base
of the cylinder holds the > 11 µm grains. The water

small sample mass and the likelihood of sample loss if another treatment
step is introduced at this stage. However, ultimately, this decision should be
made based on the individual nature of the material one is working with, i.e.
a large carbonate and/or organic component to the sample may necessitate
employing these additional steps, even at the expense of precious sample
loss.

4A selection of online calculators are available to facilitate the calcula-
tion of settling times.

5If the sample is irreplaceable, i.e. there is no ability to obtain more, it
may be preferable to use new glass cylinders only in MET fine grain prepa-
ration, in order to avoid potential sample contamination which could occur
during cleaning between samples since fine grain material is invisible to the
naked eye and MET samples are usual a ’once-off’ without the possibility
of obtaining more material in the event of sample contamination. However,
the environmental and financial impact must also be considered for such
a decision, and it is perhaps better practice to only use a new cylinder on
particularly valuable/irreplacable sample.

must now carefully be decanted into an identically sized
graduated cylinder, leaving the settled material (i.e. the >
11 µm material remaining at the bottom on the cylinder)
in approximately 1 mm of water, ensuring that none of the
settled material is transferred during the decanting process.
Upon being decanted into the next cylinder, the second step
should begin immediately.6

Step 3: Second settling. Once the water in which the
≤ 11 µm fraction is suspended is decanted into a glass 10 ml
cylinder, the next step to isolate the 4 – 11 µm grains from
the ≤ 3 µm fraction begins immediately. As we are now iso-
lating the 4 – 11 µm grain size fraction, the settling times are
adjusted accordingly (see Table 2). Once the settling time is
complete, the water column (which now contains grains 3 µm
or smaller in suspension) can be poured off and discarded, or
kept according to preference. The material now in the base
of the cylinder is the desired 4 – 11 µm grain size fraction,
and can now be collected in Step 4.

Cylinder Cylinder Drop height Settling
volume height (average) time
10 mL 8.6 cm 4.3 cm 51 min 8 sec

Table 2: Settling times (at 19 °C) to remove the 4 – 11 µm
grain size fraction.

Step 4: Preparation of liquid suspension. The material
left in the base of the cylinder after Step 3, that is, the
4 – 11 µm grain size fraction, is now carefully washed into
a small glass vial using acetone7 and is then stoppered and
kept in liquid suspension until fine grain aliquot preparation
is carried out.

Upon the completion of the four steps above the sample
is then ready to be mounted as fine grain aliquots. To make
an aliquot, as with the coarse grain technique, a small alu-
minium disc 10 mm in diameter and 0.5 mm thick is used.
The disc is placed in a small glass vial (measuring 12 mm
in diameter and c. 38 mm in height, to facilitate subsequent
removal of the aliquot). However, it is essential that the disc
is lying flat on the base of the vial so that the fine grains can-
not become trapped under the disc, which could affect the
preheating of the aliquots when being measured. This can
be achieved by placing ~ 0.25 mL of acetone in the vial first
and then placing the aluminium disc on top of the acetone,
as this creates a suction force, ensuring the disc remains at
the bottom of the vial. The glass vial containing the sample

6The ~ 12 – 90 µm fraction can be washed into a glass vial and stored in
liquid suspension if required.

7It is also possible, of course, to use acetone instead of distilled water in
the aforementioned steps, and indeed there is an argument to be made for
this facilitating drying and settling. However, owing to additional consider-
ations (costs and additional chemical use), our preference has been to only
use acetone in this final step. The minute amount of mixing between water
and acetone in this step has, in our observation, not hindered aliquot prepa-
ration. Additionally, if acetone is being used instead of water in all steps,
then the potential issue with surface tension noted above for distilled water
is usually avoided.
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Figure 1: SEM image showing distribution of fine grain sizes
for the brick test sample after settling to isolate the 4 – 11 µm
fraction.

suspended in acetone prepared in Step 4 above is then gently
agitated to ensure that all grains are once again in suspension
(the vial should not be inverted so as not to trap fine grains
around the lid) and, using a disposable pipette, 1 mL of liq-
uid sample is added to the vial and is left to settle onto the
disc.8 This vial is then left open and placed in a fume cup-
board so that the acetone can dry off. Once the acetone is
evaporated, the disc can be removed carefully from the vial
using tweezers. The aliquot will now have a thin monolayer
of fine grains which have settled upon its surface during the
evaporation process and is ready for measurement.9

3. Results
The fine grain preparation process was tested to ensure

that it was accurately isolating the 4–11 µm grain size frac-
tion. For a test sample, once aliquots were prepared a selec-
tion were examined under a scanning electron microscope
(SEM) to quantify grain sizes.

SEM examinations showed that the described methodol-
ogy is suitable for isolation of fine grains for OSL dating.
The majority of grains observed were within the 4 – 11 µm
grain size fraction, although with some slightly smaller
(~ 3 µm) and some slightly larger (~ 12 – 17 µm) grains oc-
curring too (Figure 1). Given that this slightly increased

8In standard fine grain aliquot preparation, it is necessary at this step to
be very careful not to use too much liquid and thus allow too many fine
grains to adhere to the disc. It is often also necessary, in standard method-
ology, to dilute the sample suspension. However, due to the very small
amounts sampled during MET extraction, it has been observed that the quan-
tity of fine grain material usually retained from a MET sample, when pre-
pared in accordance with the steps outlined above, produces a good grain
density for aliquot making (i.e. not too cloudy, that is, not too many grains
present), which means it is not necessary to dilute the sample. However, as
there can be a considerable amount of variation between different sample
types, practitioners may still find dilution necessary for some samples.

9This monolayer should not be visible to the naked eye, and thus it is not
necessary to attempt to add more grains via additional liquid suspension.

grain size distribution is inevitable due to the use of aver-
age drop heights and assumption of spherical grain geometry
upon which Stokes’ law is based, this variance is considered
acceptable, and even the slightly larger grains are still smaller
than the alpha range, i.e. 20 µm.

4. Conclusion
This paper has presented a step-by-step methodology to

isolate fine grains for OSL measurement from samples ob-
tained using the MET or extended MET protocol. It provides
a means by which to maximise the quantity of measurable
material from OSL dating when working with museum ob-
jects — for which only minute sample sizes can be obtained
— by making use of the multi-mineral fine grain fraction as
well as coarse grain mineral fractions. The methodology can
be readily and easily implemented by other luminescence
practitioners working with minute museum samples, or in-
deed wherever only small sample sizes are available for lu-
minescence dating.
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ments on this manuscript, and to Jim Feathers for his valu-
able comments during the review process.

References
Anderson, S. L. and Feathers, J. K. Applying luminescence dating

of ceramics to the problem of dating Arctic Archaeological sites.
Journal of Archaeological Science, 112: 10503, 2019.

Batchelor, G. K. An Introduction to Fluid Dynamics. Cambridge
University Press, Cambridge, 2010.

Feathers, J. K. Problems of ceramic chronology in the South-
east: does shell-tempered pottery appear earlier than we think?
American Antiquity, 74: 113–142, 2009.

Fleming, S. J. Supralinearity Corrections in Fine-grain Thermolu-
minescence Dating: A Re-appraisal. Archaeometry, 17: 122–
129, 1975.

Fleming, S. J. Thermoluminescence Techniques in Archaeology.
Clarendon Press, Oxford, 1979.

Frechen, M., Schweitzer, U., and Zander, A. Improvements in Sam-
ple Preparation for the Fine Grain Technique. Ancient TL, 14
(2): 15–17, 1996.

Hood, A. G. E. The extended minimum extraction technique: an
update on sampling protocols. Ancient TL, 40(2): 8–10, 2022.

7



Hood, Ancient TL, Vol. 41, No. 1, 2023

Hood, A. and Schwenninger, J.-L. The Minimum Extraction
Technique: A New Sampling Methodology for Optically Stimu-
lated Luminescence Dating of Museum Ceramics. Quaternary
Geochronology, 30: 381–385, 2015.

Janz, L., Feathers, J. K., and Burr, G. S. Dating surface assemblages
using pottery and eggshell: assessing radiocarbon and lumines-
cence techniques in Northeast Asia. Journal of Archaeological
Science, 57: 119–129, 2015.

Wintle, A. G. Luminescence dating: laboratory procedures and
protocols. Radiation measurements, 27(5-6): 769–817, 1997.

Zimmerman, D. W. Thermoluminescence from Fine Grains from
Ancient Pottery. Archaeometry, 10(1): 26–28, 1967.

Zimmerman, D. W. Thermoluminescent Dating Using Fine Grains
from Pottery. Archaeometry, 13(1): 29–52, 1971.

Zink, A. and Porto, E. Luminescence Dating of the Tanagra Ter-
racottas of the Louvre Collections. Geochronometria, 24(2):
21–26, 2005.

Reviewer
Jim Feathers

8



Thesis Abstracts, Ancient TL, Vol. 41, No. 1, 2023

Thesis Abstracts

Index
Chloé Bouscary p. 9
Christopher Garcia p. 10

Chloé Bouscary
Sub-Quaternary Himalayan tectonics inferred from

luminescence thermochronometry
December 2022

Institute of Earth Surface Dynamics, University of Lausanne,
Lausanne, Switzerland

Degree: Ph.D.
Supervisor: Georgina King

Luminescence thermochronometry is a very low-
temperature thermochronometer that allows reconstruction
of the thermal histories of the upper first few km of the
Earth’s crust within the last few 100 kyr (late Quaternary);
a spatial and temporal scale hitherto at the sensitivity limit
of other methods. Despite the potential of this method for
deriving changes in landscape and subsurface evolution, it
has until now never been applied to a large-scale study area,
or been validated as a multi-thermochronometer approach.

I calibrated the multi-luminescence measurement proto-
col for feldspar thermochronometry by analysing three sets
of samples (independently known thermal histories samples,
synthetic thermal history samples created following irradi-
ation at high temperature in the laboratory, and unknown-
thermal history samples). As the reconstruction of a sam-
ple’s thermal history depends on the thermal kinetic param-
eters extracted from isothermal decay experiments, I tested
the validity of thermal kinetic parameters obtained from dif-
ferent combinations of isothermal holding data by trying to
recover the sample’s temperature. I found that the temper-
atures inferred from inverting the data vary depending on
the combination of isothermal holding temperatures used for
thermal kinetic parameter derivation, and that the inclusion
of isothermal holding data above 250 °C result in kinetic pa-
rameters that underestimate modelled temperatures. For ap-
propriate thermal kinetic parameter derivation, and thus ac-
curate thermochronometric data, I recommended using a new
protocol with four isothermal holding temperatures between
190 and 250 °C.

The improved multi-luminescence thermochronometry
method was then used as a tool to constrain the late Quater-
nary exhumation history of the Himalayas, where two end-
member competing models have been proposed to describe
the kinematics of the central Nepal Himalayas in the last

few Myr. They differ in their interpretations of which sur-
face breaking faults accommodate current shortening and the
kinematics responsible for driving rapid exhumation in the
topographic transition zone around the Main Central Thrust
(MCT). These locally higher uplift and erosion rates in the
High Himalaya could reflect thrusting over a midcrustal ramp
with the growth of a Lesser Himalaya duplex at midcrustal
depth, or out-of-sequence thrusting along the front of the
High Himalaya, possibly driven by climatically controlled
localized exhumation. To address this debate, I successfully
measured and analysed more than 100 rock samples with lu-
minescence thermochronometry (104-5 yr), filling the tempo-
ral gap between GPS measurement, palaeoseimic (≤ 102 yr),
Holocene fluvial terrace records (103-4 yr) and geological es-
timates (≥ 106 yr) of exhumation rates.

I first focussed on the Sub-Himalayas, the most frontal
fold-and-thrust belt of the Himalayan orogen. Samples col-
lected along six transects across the Siwalik foothills yield
exhumation rates of ~ 3 – 11 mm/yr over the past ~ 200 kyr,
which convert to thrust slip rates of ~ 6 – 22 mm/yr. Compar-
ing these rates with geodetic convergence rates indicates that
at least half of the Himalayan convergence is accommodated
by the Sub-Himalayan fold-and-thrust belt, and particularly
by the Main Frontal Thrust, since the late Quaternary, con-
sistent with this fault being a high seismic hazard zone. Data
also record exhumation rates on local Sub-Himalayan intra-
wedge thrusts throughout the same time period, implying
that internal deformation of the orogenic wedge and strain
partitioning may have occurred, potentially endangering an
entire population.

I then compared existing low and medium-temperature
thermochronometric data (40Ar/39Ar on muscovite, apatite
and zircon (U-Th)/He, and apatite and zircon fission track),
to newly acquired luminescence thermochronometry data
from the High Himalaya of central Nepal. All of the ther-
mochronometric data show younger ages and higher ex-
humation rates around the topographic transition and the
MCT zone. For the higher temperature thermochronometers,
a continuous trend towards younger ages from the Lesser Hi-
malaya through the topographic transition and the MCT zone
suggest that the duplexing model best describes the ther-
mochronometric ages of this study area on Myr timescales.
However, the luminescence thermochronometry data high-
light a systematic sharp transition at the MCT, pointing to
out-of-sequence activity at this tectonic boundary on 100-
kyr timescales. Whether this difference in tectonic model
between the two timescales is due to low resolution of the
higher temperature thermochronometers, shallow isotherms
deflected by fluid circulation and hot spring activity near the
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MCT, or to a change in tectonic regime during the last 200
kyr, out-of-sequence activity of the MCT needs to be con-
sidered in seismic hazard models as it could put the local
population at risk.

A PDF of this thesis can be obtained by contacting the
author: chloe.bouscary@unil.ch

Christopher Garcia
Development of an Instrument for Spatially Resolved,

Optically Stimulated Luminescence Dosimetry of
Cobble and Dosimeter Surfaces

June 2023
Department of Physics, East Carolina University, Greenville, NC,

USA

Degree: Ph.D.
Supervisor: Regina DeWitt

Optically stimulated luminescence (OSL) dosimetry is a
method used to determine the amount of energy stored within
a crystalline insulator due to ionizing radiation. At its most
fundamental, OSL dosimetry requires optical stimulation to
induce a sample to emit luminescence, a light detection ap-
paratus to collect the luminescence signal, and a calibrating
radiation source to convert the acquired signal into an equiv-
alent dose. Conventional instruments have successfully inte-
grated these components to perform OSL dosimetry on sedi-
ment and dosimeters. In this dissertation, an instrument was
developed that allows dose-mapping: LuCIDD (Lumines-
cence instrument with Confocal and Imaging unit for Dat-
ing and Dosimetry) is based on the principles of a confo-
cal microscope. This dissertation outlines the requirements
for spatially resolved dosimetry mapping and describes the
design and construction of LuCIDD. Tests of the integrated
lasers’ ability to perform spatially resolved stimulating mea-
surements were made by measuring their focal spot size,
power density, and penetration depth. Used for calibration,
the built-in X-ray source’s energy spectrum, uniformity, and
dose rate were characterized. The minimum resolution and
stimulation time for measurements were determined, quanti-
fying the amount of time to complete a dose map of a sam-
ple’s surface. Lastly, LuCIDD’s ability to recover a known
applied dose from single points was verified to provide a
proof-of-concept for future dose-mapping measurements.
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